Задачи по теме некоторые свойства прямоугольного треугольника 7 класс

Задачи по готовым чертежам по теме «Свойства прямоугольных треугольников»

Данная разработка может помочь учителю при закреплении темы «Некоторые свойства прямоугольных треугольников», Она содержит 15 интересных задач для устного решения на свойство катета прямоугольного треугольника, лежащего против угла в 30 0 , и свойство медианы, проведенной к гипотенузе. (Геометрия 7 класс, автор Атанасян Л.С.) .

Просмотр содержимого документа
«Задачи по готовым чертежам по теме «Свойства прямоугольных треугольников»»

Решение задач по готовым чертежам по теме: «Некоторые свойства прямоугольных

Геометрия, 7 класс

К учебнику Л.С.Атанасяна

Автор: Софронова Наталия Андреевна,

учитель математики высшей категории

МОУ «Упшинская основная общеобразовательная школа»

Оршанского района Республики Марий Эл

Свойство 1 0 . Сумма острых углов прямоугольного треугольника равна 90 0 .

Свойство 2 0 . Катет прямоугольного треугольника, лежащий против угла в 30 0 , равен половине гипотенузы.

Свойство 3 0 . Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30 0 .

Свойство 4 0 . В прямоугольном треугольнике медиана, проведенная из вершины прямого угла, равна половине гипотенузы.

Свойство 5 0 . Если медиана треугольника равна половине стороны, к которой она проведена, то этот треугольник прямоугольный.

Некоторые свойства прямоугольных треугольников

Указание: проведите МО ⏊ВС

Некоторые свойства прямоугольных треугольников

Указание: проведите медиану СМ

Некоторые свойства прямоугольных треугольников

Некоторые свойства прямоугольных треугольников

Некоторые свойства прямоугольных треугольников

Некоторые свойства прямоугольных треугольников

Некоторые свойства прямоугольных треугольников

Некоторые свойства прямоугольных треугольников

Некоторые свойства прямоугольных

Некоторые свойства прямоугольных

Некоторые свойства прямоугольных

Некоторые свойства прямоугольных

Задача 12 . В треугольнике АВС угол В – тупой. Продолжения высот АА 1 , ВВ 1 , СС 1 пересекаются в точке О. Угол АОС равен 60 0 . Найдите угол АВС.

В треугольнике АВС ∠ В = 90 0 , ВD – высота, АВ = 2 ВD. Докажите, что 3АС = 4АD

DK – медиана прямоугольного Δ ВDА, ВК = КА

ВМ – медиана прямоугольного ΔАВС, МВ = МА = МС = 2у

МК – медиана равнобедренного ΔВМА, МКАВ

KS – медиана прямоугольного ΔМКА, SK = SM = SA = у

BD – медиана равнобедренного ΔСВМ, СD = DM = у

Источник

Урок геометрии 7 класса по теме «Некоторые свойства прямоугольных треугольников».
план-конспект урока по геометрии (7 класс) по теме

Урок геометрии в 7 классе по исследованию и доказательству свойств прямоугольных треугльников. Материал содержит конспект урока, карточки с заданиями для исследования, карточки с тестом, презентацию урока, презентацию теста.

Скачать:

Вложение Размер
konspekt_uroka_nekotorye_svoystva_pryamougolnykh_treugolnikov.doc 68.5 КБ
kartochki_dlya_issledovaniya_gruppam.docx 48.02 КБ
kartochki-dlya_dokazatelstva_svoystva.doc 61.5 КБ
nekotorye_svoystva_pryamougolnykh_treugolnikov.ppt 1.98 МБ
test-variant_1.ppt 245 КБ
test_-_variant_2.ppt 293.5 КБ
test_variant_1.doc 56.5 КБ
test_variant_2.doc 62 КБ

Предварительный просмотр:

Урок «Некоторые свойства прямоугольного треугольника».

Открытый урок геометрии в 7 А классе

1)Исследовать и доказать свойства прямоугольного треугольника.

2)Формировать умения и навыки применять их к решению задач.

1)Развивать познавательную активность, творческие способности и интерес к предмету.

2)Развивать логическое мышление, умение сравнивать, анализировать, обобщать, решать проблемные ситуации, делать выводы.

1)Учить прислушиваться к мнению своих товарищей.

2)Развивать умения работать в группах.

1. Мотивационный этап. Организационный момент. Постановка целей и задач урока. Актуализация знаний. Повторение теоретического материала.

2. Этап постановки учебной задачи

3.Из истории математики (сообщения учащихся).

4. Этап решения учебной задачи – анализ условия задачи, моделирование выявленных отношений. Изучение нового материала. Исследование свойств прямоугольного треугольника и их доказательство (Работа в группах).

5. Этап решения учебной задачи – апробация сконструированной модели для решения конкретно-практических задач. Закрепление нового материала.

6. Этап решения частных задач.

7. Этап уточнения и конкретизации открытого способа действия.

8.Рефлексия. Подведение итогов. Домашнее задание.

Оборудование: Компьютерный класс, презентация, карточки с готовыми чертежами, презентация, контрольный тест в виде в виде презентации на два варианта, карточки с заданиями теста (если нет компьютерного класса).

Тип занятия: урок решения учебной задачи.

  1. Мотивационный этап ( Актуализация знаний.)

Здравствуйте, ребята садитесь.

Надеюсь у вас хорошее настроение, вы готовы к работе?

Какие темы мы изучали на последних уроках? ( сумма углов треугольника, неравенство треугольника, внешний угол треугольника ..)

— какая фигура называется треугольником?

— по каким элементам мы классифицировали треугольников? ( по сторонам, по углам)

— какие существуют виды треугольников по сторонам? ( разносторонние, равнобедренные, равносторонние)

-на какие виды делятся треугольники по углам? ( остроугольные, тупоугольные, прямоугольные).

Учитель фиксирует на доске названные виды треугольников в два столбика с помощью табличек и магнитов.

2. Э тап постановки учебной задачи

— свойства каких из перечисленных треугольников мы уже изучали? ( остроугольных, равнобедренных, равносторонних).

Учитель фиксирует на доске названные виды с помощью магнитов другого цвета.

— о свойствах каких треугольников мы знаем меньше всего? ( прямоугольных )

-Как вы думаете, что мы сегодня будем изучать на уроке? Сформулируйте тему нашего сегодняшнего урока.

(Свойства прямоугольных треугольников)

Можем ли мы на одном уроке изучит все свойства прямоугольных треугольников? ( Нет)

Значит тема . Некоторые .

— Молодцы. Откройте тетради. Запишите дату и тему урока. 14.03.13.

— Какие перед нами стоят цели ?

(выявить свойства прямоугольных треугольников, доказать их, научиться применять их на практике при решении задач).

1) Какой треугольник называется прямоугольным?

2) Как называются стороны прямоугольного треугольника?

3) Что такое гипотенуза и катеты?

Из истории математики

Прямоугольный треугольник занимал почетное место уже Вавилонской геометрии, упоминание о нем часто встречается в папирусе Ахмеса.

Термин «гипотенуза» происходит от греческого слова « hypoteinsa » ( ипонейнуоза ), обозначающее «тянущаяся над чем-либо», «стягивающая».

Термин «катет» происходит от греческого слова « катетос », которое означало отвес, перпендикуляр

Среди прямоугольных треугольников широкое распространение получил так называемый египетский треугольник. Кто из вас знает или слышал об этом?

Это треугольник с соотношением сторон 3:4:5 активно применялся для построения прямых углов землемерами и архитекторами. Для построения прямого угла использовался шнур или веревка, разделенная отметками (узлами) на 12 (3+4+5) частей: треугольник, построенный натяжением такого шнура, с весьма высокой точностью оказывался прямоугольным и сами шнуры-катеты являлись направляющими для кладки прямого угла сооружения.

— К следующему уроке самые любознательные постараются найти другие специальные названия прямоугольных треугольников. ( Творческое задание)

4. Этап решения учебной задачи – анализ условия задачи, моделирование выявленных отношений. Изучение нового материала.

Учащиеся разделены на 5 групп. Группы получают карточки с готовыми чертежами и соответствующими вопросами на выбор для исследования.

Вопрос№1 : Чему равна сумма двух острых углов в прямоугольном треугольнике?

Вопрос№2 : Какая взаимосвязь между сторонами прямоугольного треугольника, у которого один из острых углов равен 30 градусов?

Вопрос№3 : Какая особенность у прямоугольных треугольников, в которых один из катетов равен половине гипотенузы?

После того, как учащиеся приходят к какому-то выводу, представитель каждой группы выдвигает свою гипотезу.

1. Сумма двух острых углов прямоугольного треугольника равна 90 0 .

2. Катет прямоугольного треугольника, лежащий против угла в 30 0 ,

равен половине гипотенузы.

3. Если катет прямоугольного треугольника равен половине гипотенузы,

то угол, лежащий против этого катета, равен 30 0 .

На доске (заранее на обратной стороне) чертежи свойств с «дано» и «доказать».

Далее дается задание учащимся сформулировать и доказать выдвинутые гипотезы (свойства прямоугольного треугольника).

В случае затруднения, дать подсказку (через 2-3 минуты) о том, чтобы достроить треугольник, равный данному.

Заслушать доказательства, отметить, что эти утверждения являются свойствами прямоугольного треугольника.

В тетради каждого ученика все формулировки и одно доказательство на листочке.

5.Закрепление нового материала

После доказательства свойств прямоугольного треугольника учащимся предлагаются задачи на готовых чертежах (слайды). Задачи решаются устно, быстро.

Один ученик у доски, остальные в тетради:

Задача № 257 , стр. 81 (если позволит время).

Один ученик у доски, остальные в тетради.

В Дано: ΔАВС.  С = 90⁰,  ВАD = 120⁰, AС + АВ = 18 см

Найти: АС, АВ.

120⁰ Решение:  ВАD = 120⁰ =>  В = 30⁰

С А D АС = АВ (по свойству катета, лежащего против угла в 30⁰)

Если АС = х см , то АВ = 2х см, тогда, учитывая условие, х + 2х = 18, х = 6, т.е. АС = 6 см, АВ = 12 см

Учитель с помощью лазерной указки демонстрирует прямые углы в кабинете: на стенах, потолке, полу, партах, доске и т.д. Для расслабления глаз полезно чередовать изображения дальние и близкие.

Тест с взаимопроверкой в парах и самооценкой.

Ответы записывают на листочках. Затем проверяют по образцу с помощью компьютера ( работа в парах) и сами ставят себе оценку.

«3» — четыре верных ответа

«4» -пять верных ответов

«5» — шесть-семь верных ответов.

6. Подведение итогов. Домашнее задание (слайд презентации).

Выбрать задание одного из уровней:

  1. Пункт 34: выучить все свойства и доказательство любых двух. № 255.

2. Пункт 34: выучить все свойства и их доказательство. № 258

  1. Пункт 34: выучить все свойства и их доказательство. № 260

Творческое задание ( по желанию) : придумать и решить задачу на применение всех трех свойств прямоугольного треугольника.

— какие цели мы ставили?

-достигли ли мы их?

— до сегодняшнего дня мы не знали свойств прямоугольных треугольников , а сегодня вы сами исследовали их, выдвинули гипотезу и доказали.

— оцените насколько хорошо вы справились с поставленной задачей

— как вы оцените свою работу на уроке, к какому уровню себя отнесете? (презентация):

  • Я всё понял и могу доказать все свойства.
  • Я всё понял и могу доказать некоторые свойства.
  • Для полного понимания мне необходимо повторить тему дома.
  • Я ничего не понял.
  1. Презентация «Некоторые свойства прямоугольных треугольников».
  2. Карточки – задания для исследования.
  3. Карточки с классификацией треугольников.
  4. Карточки для доказательства свойства.
  5. Задачи на готовых чертежах ( в презентации или на доске).
  6. Презентация «Тест с взаимопроверкой»
  7. Карточки «Тест «Прямоугольные треугольники» в двух вариантах.

Предварительный просмотр:

Задание для исследования 1 группе

По рисунку найдите неизвестные углы, заполните таблицу.

  1. А 2. В

3. В С 4. А

25⁰ 45⁰

Углы

Сделайте вывод о сумме острых углов прямоугольного треугольника.

Сумма острых углов прямоугольного треугольника ________________

Задание для исследования 2 группе

Измерьте катет напротив угла в 30⁰ и гипотенузу, заполните таблицу.

Сделайте вывод: Какая взаимосвязь между сторонами прямоугольного треугольника, у которого один из острых углов 30 ⁰ ?

В прямоугольном треугольнике напротив угла в 30 0 лежит ______

Задание для исследования 3 группе

Измерьте угол против катета, который в 2 раза меньше гипотенузы. Заполните таблицу.

Сделайте вывод: Какая особенность у острого угла прямоугольного треугольника, в котором один из катетов равен половине гипотенузы?

В прямоугольном треугольнике против катета равного половине гипотенузы лежит _____________________________________________

Предварительный просмотр:

В _________________________ треугольнике сумма __________________________

Дано: Δ АВС

Доказать:  А +  В = 90 0

В __________________________ треугольнике сумма ___________________________

Дано: Δ АВС

Доказать:  А +  В = 90 0

Катет __________________________ треугольника, лежащий против угла в ____ 0 , равен ______________________ гипотенузы.

Дано: Δ АВС

Доказать: АС = АВ

Катет __________________________ треугольника, лежащий против угла в ____ 0 , равен ______________________ гипотенузы.

Дано: Δ АВС

Доказать: АС = АВ

Если катет _____________________ треугольника равен __________________ гипотенузы, то угол лежащий против этого катета, равен _____ 0 .

Дано: Δ АВС

Доказать:  В = 30 0

Если катет _____________________ треугольника равен __________________ гипотенузы, то угол лежащий против этого катета, равен _____ 0 .

Дано: Δ АВС

Доказать:  В = 30 0

Предварительный просмотр:

Подписи к слайдам:

Урок геометрии Учитель: Щемерова О.В. 7 класс

Некоторые свойства прямоугольных треугольников

Цели урока: исследовать свойства прямоугольных треугольников; доказать эти свойства; формировать умения и навыки применять свойства при решении задач; развивать логическое мышление, творческие способности.

А С В гипотенуза катет катет

Предполагаемые гипотезы Сумма острых углов прямоугольного треугольника равна 90 0 . Катет прямоугольного треугольника, лежащий против угла в 30 0 , равен половине гипотенузы. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30 0 .

Свойства прямоугольных треугольников 1 0 Сумма острых углов прямоугольного треугольника равна 90 0 . 2 0 Катет прямоугольного треугольника, лежащий против угла в 30 0 , равен половине гипотенузы. 3 0 Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30 0 .

Решение задач по готовым чертежам 1) 37 ° А С В Найти угол В

Решение задач по готовым чертежам Найти ВС 2) 15 см 30 ° А С В

Решение задач по готовым чертежам Найти АС. 3) 4 см В А С 30 °

Решение задач по готовым чертежам А В С 4) 4, 2 см 8,4 см Найти угол С, угол А.

№ 257 В прямоугольном треугольнике АВС с прямым углом С внешний угол при вершине А равен 120 0 , АС+АВ=18 см. Найдите АС и АВ.

Домашнее задание Выбрать задание одного из уровней: Пункт 34: выучить все свойства и доказательство любых двух. № 255. 2. Пункт 34: выучить все свойства и их доказательство. № 258 Пункт 34: выучить все свойства и их доказательство. № 260 Творческое задание : придумать и решить задачу на применение свойств прямоугольного треугольника.

Рефлексия 1 . Я всё понял и могу доказать все свойства. 2. Я всё понял и могу доказать некоторые свойства. 3. Для полного понимания мне необходимо повторить тему дома. 4. Я ничего не понял.

Спасибо за урок

Предварительный просмотр:

Подписи к слайдам:

Вариант – 1 Будьте внимательны Тест

Вопрос 1: Выберите верную формулировку определения прямоугольного треугольника: Треугольник, у которого только два острых угла Треугольник с прямыми сторонами Треугольник, у которого все углы прямые Треугольник, у которого один угол прямой, а два других острые

Вопрос 2: Как называется сторона прямоугольного треугольника, противолежащая прямому углу? Основание Катет Гипотенуза Затрудняюсь ответить

Вопрос 3: Продолжите формулировку: Если острый угол прямоугольного треугольника равен 30°, то… катет равен половине гипотенузе гипотенуза равна катету катет, лежащий против этого угла, равен половине гипотенузы гипотенуза больше катета

Вопрос 4: На рисунке изображен треугольник АВС,  АВС = 42° Найдите градусную меру угла BA С . В А С 48 ° 42 ° 138 ° 90 °

А С В Нельзя определить 6 см 12см 24 см Вопрос 5: В треугольнике АВС (  С = 90 °)  А = 30°, ВС = 12 см Найдите длину гипотенузы АВ .

Вопрос 6: В равнобедренном треугольнике АВС с основанием ВС проведена высота АD. Найдите величины углов В и С, если боковая сторона треугольника АС=7 см, а СD=3,5 см 30 90 60 Нельзя определить

Вопрос 7: В прямоугольном равнобедренном треугольнике гипотенуза равна 18 см. Определите высоту треугольника, опущенную из вершины прямого угла. = = 36 18 9 Нельзя определить

Ты хорошо поработал ! Приступай к решению следующей задачи . МОЛОДЕЦ

На ошибках учатся! Повтори теорию еще раз и вернись к задаче. Не унывай

Предварительный просмотр:

Подписи к слайдам:

Вариант – 2 Будьте внимательны Тест

Вопрос 1: Верно ли, что сумма острых углов прямоугольного треугольника равна 180°? 180° Да, это верно Нет, их сумма равна другому числу Их сумма составляет 360 градусов Затрудняюсь ответить

Вопрос 2: Как называются стороны, образующие прямой угол прямоугольного треугольника? Катеты Боковые стороны Основания Нет особого названия

Вопрос 3: В треугольнике АВС с прямым углом С  ВАС = 30°, АВ = 36 см . Найдите длину катета ВС . Выберите верный ответ. В С А Нельзя определить 36 см 18 см 72 см

Вопрос 4: Каким свойством обладает катет прямоугольного треугольника, противолежащий углу в 30°? Нельзя определить Он равен другому катету Он в два раза меньше гипотенузы Он равен гипотенузе

С В А 4 см 30° С В А 4 см 30° D F Нельзя определить 8 см 2 см 4 см Вопрос 5: В равнобедренном треугольнике AC D с основанием АD проведена высота С F , из точки F на сторону A С опущен перпендикуляр FВ. Найдите длину перпендикуляра FВ, если  F СD = 30 ° , а высота СF = 4 см

Вопрос 6: В равнобедренном треугольнике АВС с основанием ВС боковая сторона АВ равна 12 см, а угол при вершине А – 120°. Определите высоту АН треугольника АВС. А С Н В Нельзя определить 24 см 12 см 6 см

Вопрос 7: В прямоугольном равнобедренном треугольнике гипотенуза равна 18 см. Определите высоту треугольника, опущенную из вершины прямого угла. = = 36 18 9 Нельзя определить

Ты хорошо поработал ! Приступай к решению следующей задачи . МОЛОДЕЦ

На ошибках учатся! Повтори теорию еще раз и вернись к задаче. Не унывай

Источник

Читайте также:  Как высчитать длину окружности если известен радиус
Поделиться с друзьями
Строю.ру
Adblock
detector