Задачи на тему окружность круг 6 класс с ответами

Длина окружности

Длина окружности

Длина любой окружности больше своего диаметра в одно и то же число раз, а именно, приблизительно в 3,14 раза. Для обозначения этой величины используется маленькая (строчная) греческая буква π (пи):

C = π.
D

Таким образом, длину окружности (C) можно вычислить, умножив константу π на диаметр (D), или умножив π на удвоенный радиус, так как диаметр равен двум радиусам. Следовательно, формула длины окружности будет выглядеть так:

где C — длина окружности, π — константа, D — диаметр окружности, R — радиус окружности.

Так как окружность является границей круга, то длину окружности можно также назвать длиной круга или периметром круга.

Задачи на длину окружности

Задача 1. Найти длину окружности, если её диаметр равен 5 см.

Решение: Так как длина окружности равна π умноженное на диаметр, то длина окружности с диаметром 5 см будет равна:

C ≈ 3,14 · 5 = 15,7 (см).

Задача 2. Найти длину окружности, радиус которой равен 3,5 м.

Решение: Сначала найдём диаметр окружности, умножив длину радиуса на 2:

теперь найдём длину окружности, умножив π на диаметр:

C ≈ 3,14 · 7 = 21,98 (м).

Задача 3. Найти радиус окружности, длина которой равна 7,85 м.

Решение: Чтобы найти радиус окружности по её длине, надо длину окружности разделить на 2π:

R = C ,
2π

следовательно, радиус будет равен:

R 7,85 = 7,85 = 1,25 (м).
2 · 3,14 6,28

Задачи на площадь круга

Задача 1. Найти площадь круга, если его радиус равен 2 см.

Решение: Так как площадь круга равна π умноженное на радиус в квадрате, то площадь круга с радиусом 2 см будет равна:

S ≈ 3,14 · 2 2 = 3,14 · 4 = 12,56 (см 2 ).

Ответ: 12,56 см 2 .

Задача 2. Найти площадь круга, если его диаметр равен 7 см.

Решение: Сначала найдём радиус круга, разделив его диаметр на 2:

теперь вычислим площадь круга по формуле:

S = πr 2 ≈ 3,14 · 3,5 2 = 3,14 · 12,25 = 38,465 (см 2 ).

Данную задачу можно решить и другим способом. Вместо того чтобы сначала находить радиус, можно воспользоваться формулой нахождения площади круга через диаметр:

S = π D 2 ≈ 3,14 · 7 2 = 3,14 · 49 =
4 4 4

= 153,86 = 38,465 (см 2 ).
4

Ответ: 38,465 см 2 .

Задача 3. Найти радиус круга, если его площадь равна 12,56 м 2 .

Решение: Чтобы найти радиус круга по его площади, надо площадь круга разделить π, а затем из полученного результата извлечь квадратный корень:

Источник

Математика 6 Самостоятельная № 24

Самостоятельная работа по математике в 6 классе «Длина окружности. Площадь круга» по УМК Мерзляк с ОТВЕТАМИ. Цитаты из пособия «Математика 6 класс. Дидактические материалы / Мерзляк и др.» использованы в учебных целях. СР-24 Длина окружности. Площадь круга + Ответы. Используется в комплекте с учебником «Математика 6 класс» авторов: Мерзляк, Полонский, Якир.

Самостоятельная работа № 24. Длина окружности.
Площадь круга. Вариант 1

Математика 6 класс (Мерзляк)
Самостоятельная № 24. Вариант 2

Тексты заданий (транскрипт)

СР-24. Вариант 3.

  1. Вычислите длину окружности, диаметр которой равен 4,7 см.
  2. Вычислите длину окружности, радиус которой равен 1,5 см.
  3. Найдите радиус окружности, длина которой равна 12π см.
  4. Вычислите площадь круга, радиус которого равен 4 см.
  5. Найдите диаметр круга, площадь которого равна 64π см 2 .
  6. Найдите длину дуги, составляющей 4/7 окружности, радиус которой равен 28 см.

СР-24. Вариант 4.

  1. Вычислите длину окружности, диаметр которой равен 5,8 дм.
  2. Вычислите длину окружности, радиус которой равен 4,5 м.
  3. Найдите радиус окружности, длина которой равна 14π см.
  4. Вычислите площадь круга, радиус которого равен 5 см.
  5. Найдите диаметр круга, площадь которого равна 81π см 2 .
  6. Найдите длину дуги, составляющей 2/11 окружности, радиус которой равен 22 см.

ОТВЕТЫ на самостоятельную работу

Вариант 1. Ответы:

137). 14,444 см
138). 15,7 дм
139). 4 см
140). 12,56 см^2
141). 12 см
142). 56,52 см

Вариант 2. Ответы:

137). 16,956 дм
138). 21,98 дм
139). 5 см
140). 28,26 см^2
141). 14 см
142). 125,6 см

Вариант 3. Ответы:

137). 14,758 см
138). 9,42 см
139). 6 см
140). 50,24 см^2
141). 16 см
142). 100,48 см

Вариант 4 . Ответы:

137). 18,212 дм
138). 28,26 м
139). 7 см
140). 78,5 см^2
141). 18 см
142). 25,12 см

Вы смотрели «СР-24 Длина окружности. Площадь круга». Цитаты упражнений из пособия для учащихся «Математика 6 класс. Дидактические материалы / Мерзляк и др.», которое используется в комплекте с учебником «Математика 6 класс» авторов: Мерзляк и др.

Источник

Подборка задач по теме «Длина окружности и площадь круга»

Подборка задач по теме «Длина окружности и площадь круга».

Просмотр содержимого документа
«Подборка задач по теме «Длина окружности и площадь круга»»

Задачи по теме: длина окружности, площадь круга

Диаметр земного шара приближенно равен 12,7 тыс. км. Скольким тысячам километров равен радиус и длина экватора Земли? (Число тысяч округлите до десятых)

Диаметр циферблата Кремлевских курантов 6,12 м, длина минутной стрелки 3,27 м. Найдите площадь циферблата. Какой путь проходит конец минутной стрелки курантов за час? Ответы округлите до сотых долей метра

Найди длину окружности и площадь круга, ограниченного этой окружностью, зная, что радиус равен 15 см.

Найдите длину окружности и площадь круглого стола, радиус которого равен 50 см.

Дан круг радиуса 10 см. Вычислите его площадь. Какую площадь будет иметь круг, радиус которого в 3 раза больше радиуса данного круга? В 2 раза меньше радиуса данного круга? Сравните полученные площади с площадью данного круга.

Найдите площадь заштрихованной фигуры FLK, если ОК=8 см.

На представлении в цирке кошка показала необычайно развитый вестибулярный аппарат. Она пробежала 75 раз по круглой тумбочке, радиус которой 2 дм! Какое расстояние она пробежала? Число π округлите до целых.

Какое расстояние проедет петух на колесе, диаметр которого 4 дм, за 1 оборот? За 3 оборота? За 10 оборотов? За n оборотов? Число π округлите до десятых.

В программе принимает участие Барт Симпсон. Он на своём скейтборде проехал расстояние, равное половине всей окружности колеса, за 3 секунды. Найдите радиус окружности этого колеса, если скорость мальчика 4 м/с. (π =3)

Клоун Красти удивил зрителей не меньше. Он проехал по арене на велосипеде, одновременно жонглируя кеглями. Какое расстояние он проехал, если колесо его велосипеда, радиусом 3 дм, обернулось 105 раз. Ответ выразить в метрах и округлить до единиц. (π =3,14)

По арене цирка, диаметр которой 20м, скачут лошади, со скоростью 300 м/мин. Сколько кругов проскачут лошади за 2 мин? Сколько прыжков выполнит кот – акробат за это же время, если за один круг он делает 26 прыжков? Число π округлите до целых.

Аттракцион «Заяц в колесе». Сколько времени длился этот номер цирковой программы, если диаметр колеса 2м, скорость зайца 6 м/с и колесо сделало 150 оборотов. (π =3,14)

Источник

Математика. 6 класс

Конспект урока

Длина окружности. Площадь круга

Перечень рассматриваемых вопросов:

  • окружность, круг и их элементы: радиус, диаметр, хорда;
  • понятие длины окружности, площади круга;
  • задачи на вычисление длины окружности и площади круга.

Окружность – это множество всех точек, находящихся на одинаковом расстоянии от заданной точки, которую называют центром окружности.

Круг – это часть плоскости, ограниченная окружностью.

Радиус – это отрезок, соединяющий центр окружности с любой точкой, лежащей на окружности.

Хорда – это отрезок, соединяющий две точки окружности.

Диаметр – это хорда, проходящая через центр окружности.

Длина окружности вычисляется по формулам: С = πd или С = 2πR, где π ≈ 3, 14 – иррациональное число.

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.
  1. Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.

Теоретический материал для самостоятельного изучения

Окружность – это множество всех точек, находящихся на одинаковом расстоянии от заданной точки, которая называется центром окружности.

Элементы окружности: центр, радиус, диаметр.

Отрезок, соединяющий две точки окружности, называется хордой.

Диаметр – это хорда, проходящая через центр окружности.

Ещё в древности было установлено, что какой бы ни была окружность, отношение её длины к её диаметру является постоянным числом. Сейчас это число обозначают греческой буквой π. (читается – «пи»)

Как измерить дину окружности?

Можно взять сантиметровую ленту (если нет ленты, можно воспользоваться нитью или полоской бумаги).

Можно прокатить кольцо по ровной поверхности, сделав полный оборот.

Проверьте, верно ли, что отношение длины окружности к диаметру ≈ 3?

Возьмите несколько круглых предметов (тарелка, стакан, игрушечное колесо и др.).

Результаты измерений можно записать в таблицу в тетради.

Закон для более точного вычисления числа π очень сложен. В настоящее время значение π для точных расчётов в строительстве, авиационной или космической промышленности находят при помощи компьютера.

Вспомните, что π – это иррациональное число, которое выражается бесконечной непериодической дробью.

При решении обычных задач используют приближенное значение

иногда используют π ≈ 3

Обозначим длину окружности буквой С, а её диаметр – буквой d, и запишем формулу:

Следовательно, справедливы формулы:

С = πd или С = 2πR

Круг – это часть плоскости, ограниченная окружностью.

С помощью числа π вычисляют площадь круга.

Разбор заданий тренировочного модуля

Тип 1. Ввод с клавиатуры пропущенных элементов в тексте

Впишите верный ответ.

Радиус круга равен 5 см. Найдите длину окружности С, площадь круга S.

С = 2πR = 2 ∙ 3,14 ∙ 5 = 31,4 (см).

S = πR 2 = 3,14 ∙ 5 2 = 3,14 ∙ 25 = 78,5 (см 2 ).

Ответ: 31,4 см; 78,5 см.

Тип 2. Множественный выбор

Вычислите площади заштрихованных фигур (размер 1 клетки равен 1 см 2 ).

Из круга вырезали квадрат.

Sкруга = πR 2 = 3,14 ∙ 4 2 = 3,14 ∙ 16 = 50,24 (см 2 ).

Sквадрата = а 2 = 4 2 = 16 (см 2 ).

Sзаштрих = 50,24 – 16 = 34,24 (см 2 ).

Из круга вырезали круг.

S1 = πR 2 = 3,14 ∙ 6 2 = 3,14 ∙ 36 = 113,04 (см 2 ).

S2 = πR 2 = 3,14 ∙ 3 2 = 3,14 ∙ 9 = 28,26 (см 2 ).

Sзаштрих = 113,04 – 28,26 = 84,78 (см 2 ).

Источник

Читайте также:  Как решать трапецию с диагональю
Поделиться с друзьями
Объясняем