Задачи на описанную окружность егэ



Задачи на описанную окружность егэ

Прямые, содержащие катеты AC и CB прямоугольного треугольника АСВ, являются общими внутренними касательными к окружностям радиусов 2 и 4. Прямая, содержащая гипотенузу АВ, является их общей внешней касательной.

а) Докажите, что длина отрезка внутренней касательной, проведенной из вершины острого угла треугольника до одной из окружностей, равна половине периметра треугольника АСВ.

б) Найдите площадь треугольника АСВ.

а) Введём обозначения, как показано на рисунке, пусть M, H, N — точки касания. Касательные, проведённые к окружности из одной точки равны: AM = AN, CM = CH, HB = BN. Поэтому:

откуда p = AM, где Р — периметр, p — полупериметр треугольника.

б) Для определения площади треугольника используем формулу, связывающую её с полупериметром, стороной и радиусом вневписанной окружности, касающейся этой стороны и продолжений двух других сторон треугольника:

Ответ:

Примечание: указанная в решении формула легко может быть получена из следующих соображений где O1 — центр окружности с радиусом r1. При этом

Тогда

В остроугольном треугольнике ABC проведены высоты AP и CQ.

а) Докажите, что угол PAC равен углу PQC.

б) Найдите радиус окружности, описанной около треугольника ABC, если известно, что PQ = 8 и ∠ABC = 60°.

а) Углы APC и AQC — прямые, значит, точки A, Q, P и C лежат на одной окружности с диаметром AC, и, следовательно, равны и вписанные углы PAC и PQC этой окружности, опирающиеся на дугу PC, что и требовалось доказать.

б) Прямоугольные треугольники ABP и CBQ имеют общий угол ABC, следовательно, они подобны, откуда или но тогда и треугольники BAC и BPQ также подобны, причем коэффициент подобия равен откуда Тогда радиус R окружности, описанной около треугольника ABC равен

Ответ:

В остроугольном треугольнике KMN проведены высоты KB и NA.

Читайте также:  Окружность с углами по 120

а) Докажите, что угол ABK равен углу ANK.

б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что и ∠KMN = 45°.

а) Углы NAK и NBK, опирающиеся на отрезок KN, равны, значит, точки A, B, N и K лежат на одной окружности, а, следовательно, равны и вписанные углы ABK и ANK этой окружности, опирающиеся на дугу AK, что и требовалось доказать.

б) Прямоугольные треугольники KMB и NMA имеют общий угол KMN, следовательно, они подобны, откуда или но тогда и треугольники KMN и BMA также подобны, причем коэффициент подобия равен откуда

Тогда радиус R окружности, описанной около треугольника ABM равен

Ответ:

Точка О — центр окружности, вписанной в треугольник ABC. На продолжении отрезка AO за точку О отмечена точка K так, что BK = OK.

а) Докажите, что четырехугольник ABKC вписанный.

б) Найдите длину отрезка AO, если известно, что радиусы вписанной и описанной окружностей треугольника ABC равны 3 и 12 соответственно, а OK = 5.

а) Пусть Так как — центр вписанной окружности треугольника ABC, то — биссектрисы углов и значит, Угол BOK внешний для треугольника AOB, поэтому (см. рис.).

Так как (по построению), то тогда Углы CBK и KAC опираются на один и тот же отрезок CK и равны друг другу: Тогда по признаку, связанному со свойством вписанных углов, точки лежат на одной окружности.

б) Обозначим через радиусы вписанной и описанной окружностей треугольника Пусть H — проекция точки O на сторону AB (см. рис.), тогда Так как точки лежат на одной окружности, то радиус описанной окружности треугольника ABK совпадает с радиусом описанной окружности треугольника и равен Из треугольника ABK по теореме синусов: Тогда

Так как то

Читайте также:  Бипариетальный размер окружность живота

Источник

Задачи на описанную окружность егэ

Прямые, содержащие катеты AC и CB прямоугольного треугольника АСВ, являются общими внутренними касательными к окружностям радиусов 2 и 4. Прямая, содержащая гипотенузу АВ, является их общей внешней касательной.

а) Докажите, что длина отрезка внутренней касательной, проведенной из вершины острого угла треугольника до одной из окружностей, равна половине периметра треугольника АСВ.

б) Найдите площадь треугольника АСВ.

а) Введём обозначения, как показано на рисунке, пусть M, H, N — точки касания. Касательные, проведённые к окружности из одной точки равны: AM = AN, CM = CH, HB = BN. Поэтому:

откуда p = AM, где Р — периметр, p — полупериметр треугольника.

б) Для определения площади треугольника используем формулу, связывающую её с полупериметром, стороной и радиусом вневписанной окружности, касающейся этой стороны и продолжений двух других сторон треугольника:

Ответ:

Примечание: указанная в решении формула легко может быть получена из следующих соображений где O1 — центр окружности с радиусом r1. При этом

Тогда

В остроугольном треугольнике ABC проведены высоты AP и CQ.

а) Докажите, что угол PAC равен углу PQC.

б) Найдите радиус окружности, описанной около треугольника ABC, если известно, что PQ = 8 и ∠ABC = 60°.

а) Углы APC и AQC — прямые, значит, точки A, Q, P и C лежат на одной окружности с диаметром AC, и, следовательно, равны и вписанные углы PAC и PQC этой окружности, опирающиеся на дугу PC, что и требовалось доказать.

б) Прямоугольные треугольники ABP и CBQ имеют общий угол ABC, следовательно, они подобны, откуда или но тогда и треугольники BAC и BPQ также подобны, причем коэффициент подобия равен откуда Тогда радиус R окружности, описанной около треугольника ABC равен

Ответ:

В остроугольном треугольнике KMN проведены высоты KB и NA.

Читайте также:  Задачи на пропорциональные отрезки прямоугольного треугольника

а) Докажите, что угол ABK равен углу ANK.

б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что и ∠KMN = 45°.

а) Углы NAK и NBK, опирающиеся на отрезок KN, равны, значит, точки A, B, N и K лежат на одной окружности, а, следовательно, равны и вписанные углы ABK и ANK этой окружности, опирающиеся на дугу AK, что и требовалось доказать.

б) Прямоугольные треугольники KMB и NMA имеют общий угол KMN, следовательно, они подобны, откуда или но тогда и треугольники KMN и BMA также подобны, причем коэффициент подобия равен откуда

Тогда радиус R окружности, описанной около треугольника ABM равен

Ответ:

Точка О — центр окружности, вписанной в треугольник ABC. На продолжении отрезка AO за точку О отмечена точка K так, что BK = OK.

а) Докажите, что четырехугольник ABKC вписанный.

б) Найдите длину отрезка AO, если известно, что радиусы вписанной и описанной окружностей треугольника ABC равны 3 и 12 соответственно, а OK = 5.

а) Пусть Так как — центр вписанной окружности треугольника ABC, то — биссектрисы углов и значит, Угол BOK внешний для треугольника AOB, поэтому (см. рис.).

Так как (по построению), то тогда Углы CBK и KAC опираются на один и тот же отрезок CK и равны друг другу: Тогда по признаку, связанному со свойством вписанных углов, точки лежат на одной окружности.

б) Обозначим через радиусы вписанной и описанной окружностей треугольника Пусть H — проекция точки O на сторону AB (см. рис.), тогда Так как точки лежат на одной окружности, то радиус описанной окружности треугольника ABK совпадает с радиусом описанной окружности треугольника и равен Из треугольника ABK по теореме синусов: Тогда

Так как то

Источник

Поделиться с друзьями
Объясняем