Задача периметр прямоугольного участка

Подготовка к ОГЭ по математике. Решение задачи 17. Вычислите периметр прямоугольного участка земли.

Решите задачу из открытого банка заданий ОГЭ (ГИА) по математике. Модуль «Реальная математика».

Условие задачи: Найдите периметр прямоугольного участка земли, площадь которого равна 48400 кв. м и одна сторона в 4 раза больше другой. Ответ дайте в метрах.

Будем рады, если Вы поделитесь ссылкой на этот видеоурок с друзьями!

Опубликованы проекты контрольных измерительных материалов ЕГЭ и ОГЭ 2023 года
Министерство просвещения опубликовало Примерный календарный план воспитательной работы на 2022-2023 учебный год
Минпросвещения сокращает перечень заполняемой учителем документации с 11 до 5 пунктов
Госдума отклонила законопроект о базовой ставке зарплаты учителей не менее двух МРОТ
В Госдуме предложили пересдавать ЕГЭ неограниченное количество раз

Если Вы создаёте авторские видеоуроки для школьников и учителей и готовы опубликовать их, то просим Вас связаться с администратором портала.

© 2007 — 2022 Сообщество учителей-предметников «Учительский портал»
Свидетельство о регистрации СМИ: Эл № ФС77-64383 выдано 31.12.2015 г. Роскомнадзором.
Территория распространения: Российская Федерация, зарубежные страны.
Учредитель / главный редактор: Никитенко Е.И.

Сайт является информационным посредником и предоставляет возможность пользователям размещать свои материалы на его страницах.
Публикуя материалы на сайте, пользователи берут на себя всю ответственность за содержание этих материалов и разрешение любых спорных вопросов с третьими лицами.
При этом администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта.
Если вы обнаружили, что на сайте незаконно используются материалы, сообщите администратору через форму обратной связи — материалы будут удалены.

Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала.

Фотографии предоставлены

Источник

Задача периметр прямоугольного участка

Найди периметр квадрата со стороной 8 см.

Решение:
8 · 4 = 32 (см)

Ответ: периметр квадрата 32 см.

Задача №2

Найди периметр квадрата со стороной 16 см.

Решение:
16 · 4 = 64 (см)

Ответ: периметр квадрата 64 см.

Задача №3

Периметр квадрата 16 см. Найди его сторону.

Решение:
16 : 4 = 4 (см)

Ответ: сторона квадрата 4 см.

Задача №4

Найди периметр прямоугольника со сторонами 9 и 6 см.

Решение:
(9 + 6) · 2 = 30 (см)

Ответ: периметр прямоугольника 30 см.

Задача №5

Найди периметр прямоугольника со сторонами 7 и 8 см.

Решение:
(7 + 8) · 2 = 30 (см)

Ответ: периметр прямоугольника 30 см.

Задача №6

Найди длину прямоугольника, если его ширина 7 см, а периметр равен 40 см.

Решение:

Вариант Ⅰ
У прямоугольника противоположные стороны равны, то есть две равных ширины и две равных длины.
Если одна ширина (сторона) 7 см, то и другая (противоположная) тоже 7 см.
7 + 7 = 14 (см)
Периметр состоит из суммы длин четырёх сторон прямоугольника, сумму двух противоположных сторон мы уже узнали, тогда сумма двух других противоположных сторон (длин) будет равна:
40 — 14 = 26 (см)
Теперь узнаем длину одной стороны:
26 : 2 = 13 (см)

Ответ: длина прямоугольника 13 см.

Вариант Ⅱ
P = (a + b) · 2 — периметр прямоугольника

(a + b) · 2 = P , где a — длина = ?, b — ширина = 7 см, P — периметр = 40 см.
Составим уравнение:
(а + 7) · 2 = 40
2а + 14 = 40
2а = 40 — 14
2а = 26
а = 26 : 2
а = 13

Ответ: длина прямоугольника 13 см.

Задача №7

Найди ширину прямоугольника, если его длина 10 см, а периметр равен 30 см.

Решение:

Вариант Ⅰ
У прямоугольника противоположные стороны равны, то есть две равных ширины и две равных длины.
Если одна длина (сторона) 10 см, то и другая (противоположная) тоже 10 см.
10 + 10 = 20 (см)
Периметр состоит из суммы длин четырёх сторон прямоугольника, сумму двух противоположных сторон мы уже узнали, тогда сумма двух других противоположных сторон будет равна:
30 — 20 = 10 (см)
Теперь узнаем ширину одной стороны:
10 : 2 = 5 (см)

Ответ: ширина прямоугольника 5 см.

Вариант Ⅱ
P = (a + b) · 2 — периметр прямоугольника

(a + b) · 2 = P , где a — длина = 10 см, b — ширина = ?, P — периметр = 30 см.

Составим уравнение:
(10 + b) · 2 = 30
20 + 2b = 30
2b = 30 — 20
2b = 10
b = 10 : 2
b = 5

Ответ: ширина прямоугольника 5 см.

Задача №8

Ширина прямоугольника 14 см. Длина на 5 см больше. Найди его периметр и площадь.

Решение:
14 + 5 = 19 (см)
(19 + 14) · 2 = 66 (см)
19 · 14 = 266 (см²)

Ответ: периметр прямоугольника 66 см; площадь прямоугольника 266 см².

Задача №9

Длина прямоугольника 7 см. Ширина на 3 см меньше. Найди его периметр и площадь.

Решение:
7 — 3 = 4 (см)
(7 + 4) · 2 = 22 (см)
7 · 4 = 28 (см²)

Ответ: периметр прямоугольника 22 см; площадь прямоугольника 28 см².

Задача №10

Периметр квадрата 24 см. Найди его площадь.

Решение:
24 : 4 = 6 (см)
6 · 6 = 36 (см²)

Читайте также:  От вершины с равнобедренного треугольника авс с основанием ав отложены равные отрезки ca1 на стороне

Ответ: площадь квадрата 36 см².

Задача №11

Периметр квадрата 36 см. Найди его площадь.

Решение:
36 : 4 = 9 (см)
9 · 9 = 81 (см²)

Ответ: площадь квадрата 81 см².

Задача №12

Ученику нужно было начертить прямоугольник со сторонами 5 см и 9 см, а он начертил его со сторонами 6 и 8 см.
На сколько см² он ошибся?

Решение:
5 · 9 = 45 (см²)
6 · 8 = 48 (см²)
48 — 45 = 3 (см²)

Ответ: он ошибся на 3 см².

Задача №13

Ученику нужно было начертить прямоугольник со сторонами 10 см и 8 см, а он начертил его со сторонами 8 см и 6.
На сколько см² он ошибся?

Решение:
10 · 8 = 80 (см²)
8 · 6 = 48 (см²)
80 — 48 = 32 (см²)

Ответ: он ошибся на 32 см².

Задача №14

Периметр прямоугольника 36 см. Длина его 4 см. Найди площадь прямоугольника.

Решение:
4 + 4 = 8 (см)
36 — 8 = 28 (см)
28 : 2 = 14 (см)
14 · 4 = 56 (см²)

Ответ: площадь прямоугольника 56 см².

Задача №15

Сторона квадрата 6 см. Найди длину прямоугольника с таким же периметром и шириной 3 см.

Решение:
6 · 4 = 24 (см)
3 + 3 = 6 (см)
24 — 6 = 18 (см)
18 : 2 = 9 (см)

Ответ: длина прямоугольника 9 см.

Задача №16

Сторона квадрата 18 см. Найди длину прямоугольника с таким же периметром и шириной 14 см.

Решение:
18 · 4 = 72 (см)
14 + 14 = 28 (см)
72 — 28 = 44 (см)
44 : 2 = 22 (см)

Ответ: длина прямоугольника 22 см.

Задача №17

Площадь прямоугольника 40 см². Ширина его 4 см.
Чему равен периметр прямоугольника?

Решение:
40 : 4 = 10 (см)
(10 + 4) · 2 = 28 (см)

Ответ: периметр прямоугольника 28 см.

Задача №18

Площадь прямоугольника 40 см². Длина его 8 см.
Чему равен периметр прямоугольника?

Решение:
40 : 8 = 5 (см)
(8 + 5) · 2 = 26 (см)

Ответ: периметр прямоугольника 26 см.

Задача №19

Ширина прямоугольника 15 см, длина 20 см.
Найди длину другого прямоугольника с той же площадью, если его ширина в 3 раза меньше ширины первого прямоугольника.

Решение:
в первом действии узнаём площадь по формуле a · b = S
15 · 20 = 300 (см²) — S одного и другого прямоугольника
теперь ширину второго
15 : 3 = 5 (см) — ширина другого прямоугольника
и отвечаем на вопрос задачи применив формулу S : a = b
300 : 5 = 60 (см)

Ответ: длина другого прямоугольника 60 см.

Задача №20

Длина прямоугольника b = 32 см. Ширина a = 4 см.
Найди длину другого прямоугольника с такой же площадью, если его ширина в 2 раза больше ширины первого прямоугольника.

Решение:
узнаем площадь прямоугольников по формуле a · b = S
32 · 4 = 128 (см²) — S первого прямоугольника
теперь ширину второго прямоугольника
4 · 2 = 8 (см) — ширина другого прямоугольника
применив формулу S : a = b узнаем длину другого
128 : 8 = 16 (см)

Ответ: длина другого прямоугольника 16 см.

Задача №21

Какой участок земли потребует большую ограду: прямоугольный размерами 32 м и 2 м или квадратный, имеющий ту же площадь?

Решение:
Ⅰ. Прямоугольный участок
32 · 2 = 64 (м²) — S прямоугольного участка = 64 (м²)
(32 + 2) · 2 = 68 (см) — P прямоугольного участка = 68 (см)

Ⅱ. Квадратный участок (имеющий площадь прямоугольного = 64 м²)
Если S квадрата = a · a, тогда, из формулы, узнаем сторону квадратного участка S : a = a
(у квадрата все стороны равны, тогда a · a = S — таблицу умножения мы знаем, подберём значения a и заменим их — 8 · 8 = S или 8 · 8 = 64 или 64 = 8 · 8 или 64 : 8 = 8)
64 : 8 = 8 (м) — любая сторона квадратного участка = 8 (м)
8 · 4 = 32 (м) — периметр квадратного участка = 32 (м)

Ⅲ. P прям. — P квадр. = разница периметров
68 — 32 = 36 (м) — разница периметров

Ответ: потребует большую ограду прямоугольный на 36 м.

Задача №22

Какая комната потребует больше плинтуса: прямоугольная размерами 4 м и 9 м или квадратная, имеющая ту же площадь?

Решение:
(4 + 9) · 2 = 26 (м) — P периметр прямоугольной комнаты
4 · 9 = 36 (м²) — S площадь прямоугольной комнаты
(из условия задачи квадратная комната имеет ту же площадь 36 м², а из определения площади квадрата знаем, что все стороны равны a = a = a = a, смотрим таблицу умножения и видим 6 · 6 = 36, то есть любая из сторон a = 6
запишем (приведём) формулу площади квадрата S = a · a в форму нахождения её стороны S : a = a
36 : 6 = 6 (м) — любая из сторон квадратной комнаты
6 · 4 = 24 (м) — P периметр квадратной комнаты
26 — 24 = 2 (м)

Ответ: потребует больше плинтуса прямоугольная на 2 м.

Задача №23

Ребро куба равно 2 сантиметров. Найти площадь всех граней куба.

Решение:
Куб — многогранник, поверхность которого состоит из шести одинаковых по площади квадратов.
У куба 8 вершин, 12 рёбер, 6 граней (поверхностей).
Если S = a · a — площадь квадрата, тогда
S = (a · a) · 6 — площадь всех граней куба, из условия задачи a = 2, тогда S = 2 · 2 · 6
2 · 2 · 6 = 24 (см²)

Ответ: площадь всех граней куба равна 24 см².

Задача №24

Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры.

Решение:

Для решения потребуются формулы:
S = a · a; S = a² — площадь квадрата (у квадрата все стороны равны)
S = a · b — площадь прямоугольника (у прямоугольника противоположные стороны равны)
Далее всё очень просто:

Квадрат A.
S = a · a или a · a = S — формула площади квадрата, тогда
8 · 8 = 64 — площадь квадрата
S = a · a или a · b = S — формула площади прямоугольника, тогда
4 · 1 = 4 — площадь вырезанного прямоугольника
из площади квадрата вычтем площадь вырезанного прямоугольника
64 — 4 = 60

Ответ: площадь получившейся фигуры равна 60.

Читайте также:  Обратная формула площади трапеции

Квадрат B.
S = a · a или a · a = S — формула площади квадрата, тогда
7 · 7 = 49 — площадь квадрата
S = a · a или a · b = S — формула площади прямоугольника, тогда
4 · 2 = 8 — площадь вырезанного прямоугольника
из площади квадрата вычтем площадь прямоугольника
49 — 8 = 41

Ответ: площадь получившейся фигуры равна 41.

Квадрат C.
S = a · a или a · a = S — формула площади квадрата, тогда
7 · 7 = 49 — площадь квадрата
S = a · a или a · b = S — формула площади прямоугольника, тогда
5 · 1 = 5 — площадь вырезанного прямоугольника
из площади квадрата вычтем площадь прямоугольника
49 — 5 = 44

Ответ: площадь получившейся фигуры равна 44.

Задача №25

  1. Найдите площадь фигуры, изображённой на рисунке A.
  2. Найдите площадь фигуры, изображённой на рисунке B.
  3. Найдите площадь фигуры, изображённой на рисунке C.
  4. Найдите площадь фигуры, изображённой на рисунке D.
  5. Найдите площадь фигуры, изображённой на рисунке E.

(!) Фигуры расположены на листе в клетку, где каждая клетка – квадрат со стороной равной 1см.

Определение:

Неправильный четырехугольник – фигура, у которой стороны не равны и не параллельны.

Решение:
разобьём неправильные четырехугольники A, B, D на два прямоугольных треугольника и прямоугольник, а неправильные четырехугольники C, E на два прямоугольных треугольника и квадрат.

Применив формулы площади треугольника , квадрата и прямоугольника легко решим поставленную задачу

Фигура A.
S = a · b — формула площади прямоугольника, тогда
3 · 4 = 12 см² — площадь прямоугольника a
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 5 = 2,5 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника
½ ·2 · 4 = 4 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры A
12 + 2,5 + 4 = 18,5 см²

Ответ: площадь фигуры A 18,5 см²

Фигура B.
S = a · b — формула площади прямоугольника, тогда
5 · 1 = 5 см² — площадь прямоугольника a
S = ½ · a · h — формула площади треугольника, тогда
½ · 6 · 5 = 15 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 1 = 0,5 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры B
5 + 15 + 0,5 = 18,5 см²

Ответ: площадь фигуры B 20,5 см²

Фигура C.
S = a · a; S = a² — формула площади квадрата, тогда
5 · 5 = 25 см² — площадь квадрата a
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 6 = 3 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 5 = 2,5 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры C
25 + 3 + 2,5 = 30,5 см²

Ответ: площадь фигуры C 30,5 см²

Фигура D.
S = a · b — формула площади прямоугольника, тогда
3 · 4 = 12 см² — площадь прямоугольника a
S = ½ · a · h — формула площади треугольника, тогда
½ · 1 · 5 = 2,5 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ · 2 · 4 = 4 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры D
12 + 2,5 + 4 = 18,5 см²

Ответ: площадь фигуры A 18,5 см²

Фигура E.
S = a · a; S = a² — формула площади квадрата, тогда
2 · 2 = 4 см² — площадь квадрата a
S = ½ · a · h — формула площади треугольника, тогда
½ · 3 · 4 = 6 см² — площадь прямоугольного треугольника b
S = ½ · a · h — формула площади треугольника, тогда
½ · 2 · 2 = 2 см² — площадь прямоугольного треугольника c
теперь сложив полученные площади узнаем полную площадь фигуры E
4 + 6 + 2 = 12 см²

Ответ: площадь фигуры E 12 см².

Задача №26

Найдите площади и периметры фигурок. Сделайте вывод.

Определение:
Периметр – сумма длин всех сторон фигуры выраженый в милиметрах, сантиметрах, дециметрах, метрах и т.д.

Площадь фигуры – геометрическое понятие, размер плоской фигуры выраженый в мм², см², дм², м² и т.д.

Пусть каждая из сторон клетки равна 1 см, тогда
применив формулу площади квадрата S = a · a получим площадь одной клетки 1 · 1 = 1 см²

Фигура A — прямоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура A имеет четыре стороны, тогда
1 + 4 + 1 + 4 = 10 см — периметр фигуры.

Фигура B — квадрат состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура B имеет четыре стороны, тогда
2 + 2 + 2 + 2 = 8 см — периметр фигуры.

Фигура C — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура C имеет шесть сторон, тогда
3 + 1 + 2 + 1 + 2 + 1 = 10 см — периметр фигуры.

Фигура D — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура D имеет восемь сторон, тогда
1 + 1 + 2 + 1 + 1 + 1 + 2 + 1 = 10 см — периметр фигуры.

Фигура E — неправильный многоугольник состоящий из четырёх клеток по 1 см², тогда
1 · 4 = 4 см² — площадь фигуры;
фигура E имеет восемь сторон, тогда
1 + 1 + 1 + 3 + 1 + 1 + 1 + 1 = 10 см — периметр фигуры.

Вывод:
Фигуры A, B, C, D, E имеют одинаковую площадь, но наименьший периметр имеет квадрат.
У разных по форме плоских фигур, с одинаковой площадью, наименьший периметр всегда имеет квадрат.

Задача №27

Найти периметр прямоугольника, если сторона (катет) a = 6 см, а сторона (катет) b = 8 см
Найдём гипотенузу прямоугольного треугольника по формуле: a² + b² = c²

Решение:
6² + 8² = c²
6 · 6 + 8 · 8 = c²
36 + 64 = с²
с² = 36+64
с² = 100
с = 10
Найдём периметр прямоугольного треугольника по формуле: p = a + b + c
p = 6 + 8 + 10 = 24

Ответ: периметр прямоугольника равен 24 см.

Задача №28

Найти периметр прямоугольника, если сторона (катет) a = 6 см, а сторона (гипотенуза) с = 10 см
Найдём гипотенузу прямоугольного треугольника по формуле: a² + b² = c²

Решение:
6² + b² = 10²
6 · 6 + b² = 10 · 10
36 + b² = 100
b² = 100 — 36
с² = 64
с = 8
Найдём периметр прямоугольного треугольника по формуле: p = a + b + c
p = 6 + 8 + 10 = 24

Читайте также:  Прямоугольные накладки на врезной замок

Ответ: периметр прямоугольника равен 24 см.

Задача №29

В треугольной пластине abc у которой один из углов 90°, сторона a равна 20 сантиметрам, а сторона b равна 10 сантиметрам просверлили отверстие диаметром 3 сантиметра. Какую оставшуюся площадь пластины нужно покрасить?

Решение:
Мы знаем что площадь – S треугольника равна половине – ½ произведения его основания – a умноженная на высоту – h, то есть S = ½ · a · h, а Формула площади круга S = πd² : 4, число π ≈ 3,14.
1) По условию задачи пластина имеет форму прямоугольника со сторонами abc, в данном случае сторона b является высотой треугольника.
Тогда формула будет выглядеть так – S = ½ · a · b
подставим значения в эту формулу
½ · 10 · 20 = 100 (см²) — площадь треугольника
2) Подставим значения в формулу и узнаем площадь круга S = πd² : 4
3,14 · 3² : 4 = 3,14 · 9 : 4 = 7,065 (см²)
3) Теперь мы можем ответить на вопрос поставленный в задаче
100 — 7,065 = 92,935 см² — оставшуюся площадь пластины

Ответ: нужно покрасить 92,935 см².

Задача №30

На садовом участке Петя построил для цыплят круглый вольер радиусом 5 метров. Участок имеет прямоугольную форму с длинной 120 метров и шириной равной 8 диаметрам вольера. Сколько потребуется метров металлической сетки чтобы огородить участок и вольер?

Решение:
Для решения задачи нам потребуются вычислить периметры участка и вольера.
1) В первом действии узнаем диаметр вольера, нам известен радиус 5 метров, тогда по формуле диаметр равен двум радиусам D = 2R
5 · 2 = 10 (м) — диаметр вольера
2) Если ширина участка равна 8 диаметрам вольера, тогда
10 · 8 = 80 м — ширина участка
3) Далее по формуле P = (a + b) · 2 — периметр прямоугольника
120 + 80 · 2 = 400 (м)
4) Теперь по формуле P = 2πR — длина окружности (периметр) вольера
2 · 3,14 · 5 = 2 · 3,14 · 5 = 31,4 (м)
5) В последнем действии сложим периметры участка и вольера ответим на вопрос задачи
400 + 31,4 = 431,4 (м)

Ответ: потребуется 431,4 метров металлической сетки.

Известные и великие математики

ученые древности, средневековья и современности, и их вклад в мировую науку

Рене Декарт

математик, философ
Дата рождения: 31 марта 1596 г.
Место рождения: Декарт, Турень, Абсолютная монархия во Франции
Дата смерти: 11 февраля 1650 г. (53 года), Стокгольм, Швеция

Биография

Родился 31 марта 1596 года в городе Ла-Э-ан-Турен (ныне Декарт), департамент Эндр и Луара, Франция. Декарт происходил из старинного, но обедневшего дворянского рода, был младшим (третьим) сыном в семье. Начальное образование Декарт получил в иезуитском колле́же Ла Флеш, где его учителем был Жан Франсуа.

В коллеже Декарт познакомился с Мареном Мерсенном (тогда — учеником, позже — священником), будущим координатором научной жизни Франции, и Жаком Валле де Барро. Религиозное образование только укрепило в молодом Декарте скептическое отношение к тогдашним философским авторитетам. Позже он сформулировал свой метод познания: дедуктивные (математические) рассуждения над результатами воспроизводимых опытов.

В 1612 году Декарт закончил коллеж, некоторое время изучал право в Пуатье, затем уехал в Париж, где несколько лет чередовал рассеянную жизнь с математическими исследованиями. Затем он поступил на военную службу (1617) — сначала в революционной Голландии (в те годы — союзнице Франции), затем в Германии, где участвовал в недолгой битве за Прагу (Тридцатилетняя война).

В Голландии в 1618 году Декарт познакомился с выдающимся физиком и натурфилософом Исааком Бекманом, оказавшим значительное влияние на его формирование как учёного. Несколько лет Декарт провёл в Париже, предаваясь научной работе, где, помимо прочего, открыл принцип виртуальных скоростей, который в то время никто ещё не был готов оценить по достоинству.

Затем — ещё несколько лет участия в войне (осада Ла-Рошели). По возвращении во Францию оказалось, что свободомыслие Декарта стало известно иезуитам, и те обвинили его в ереси. Поэтому Декарт переезжает в Голландию (1628), где проводит 20 лет в уединённых научных занятиях.

В 1634 году он заканчивает свою первую, программную книгу под названием «Мир» (Le Monde), состоящую из двух частей: «Трактат о свете» и «Трактат о человеке». Вскоре, однако, одна за другой, появляются другие книги Декарта.

Кардинал Ришельё благожелательно отнёсся к трудам Декарта и разрешил их издание во Франции. Протестантские же богословы Голландии наложили на них проклятие (1642)

В 1649 году Декарт, измученный многолетней травлей за вольнодумство, поддался уговорам шведской королевы Кристины (с которой много лет активно переписывался) и переехал в Стокгольм. Почти сразу после переезда он серьёзно простудился и вскоре умер.

Его труды:

  • Сформулировал (хотя и не доказал) основную теорему алгебры
  • Методы решения алгебраических уравнений
  • Классификация алгебраических кривых
  • Сформулировал точное «правило знаков» для определения числа положительных корней уравнения
  • Исследовал алгебраические функции (многочлены)
  • Исследования Декарта в области к механики, оптики и общему строению Вселенной
  • Математически вывел закон преломления света
  • Понятие о рефлексе
  • Классическое построение философии рационализма
  • Теория близкодействия
  • Метод радикального сомнения
  • Картезианский дуализм

В память о Декарте:

  • Великий физиолог И. П. Павлов поставил памятник-бюст Декарту возле своей лаборатории
  • В честь учёного названы его родной город
  • Назван кратер на Луне
  • Назван астероид (3587) Descartes
  • Декартова система координат
  • Декартов лист
  • Декартов овал
  • Декартово дерево
  • Декартово произведение

Цитата: У одного человека зачастую больше шансов сделать открытие, нежели у нескольких, занимающихся одной проблемой.

Источник

Поделиться с друзьями
Строю.ру
Adblock
detector