Если у треугольника две стороны равны между собой то он равнобедренный

Равнобедренный треугольник и его свойства — определение и вычисление с примерами решения

Среди множества треугольников выделяются треугольники, имеющие особые свойства. К ним относятся, например, равнобедренные треугольники.

Определение. Треугольник называется равнобедренным, если две его стороны равны.

Равные стороны равнобедренного треугольника называются боковыми сторонами, а третья сторона называется основанием равнобедренного треугольника.

Если в равнобедренном треугольнике ABC равны стороны АС и AB, то точка А называется вершиной равнобедренного треугольника, а точки В и Свершинами при его основании. Угол А называется углом при вершине, а углы B и Суглами при основании (рис. 72, а).

Определение. Треугольник, все стороны которого равны, называется равносторонним.

Заметим, что из данных определений следует, что любой равносторонний треугольник является также и равнобедренным.

Теперь докажем некоторые теоремы о свойствах равнобедренного треугольника.

Теорема 3 (о свойстве углов при основании равнобедренного треугольника). В равнобедренном треугольнике углы при основании равны.

1) Пусть ABC — равнобедренный треугольник, боковые стороны которого АС и AB. Докажем, что (рис. 72, б).

2) Пусть отрезок AF — биссектриса треугольника ABC. Тогда треугольники ABF и ACF равны по первому признаку равенства треугольников (АС = AB по условию, сторона AF — общая, 1 = 2, так как AF — биссектриса треугольника ABC).

3) Из равенства треугольников ABF и ACF следует, что B = C.

Теорема 4 (о свойстве биссектрисы, проведенной к основанию равнобедренного треугольника).

В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

  1. Пусть ABC — равнобедренный треугольник, у которого АС = AB, отрезок AF — биссектриса этого треугольника. Докажем, что отрезок АF является медианой и высотой этого треугольника (рис. 72, в).
  2. Треугольники АВF и АСF равны по первому признаку равенства треугольников (АС = АВ по условию, сторона АF — общая, 1 = 2).
  3. Из равенства треугольников АВF и АСF следует, что ВF = FC, т. е. точка F — середина стороны ВС, а, значит, отрезок АF — медиана треугольника АВС.
  4. Из равенства треугольников АВF и АСF также следует, что 3 = 4. Так как углы 3 и 4 смежные и равные, то они прямые. Отсюда следует, что отрезок АF — высота треугольника АВС.

Из факта совпадения в равнобедренном треугольнике биссектрисы, медианы и высоты следуют утверждения.

  1. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
  2. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Серединный перпендикуляр к отрезку
  • Второй и третий признаки равенства треугольников
  • Параллельные прямые
  • Соотношения между сторонами и углами треугольника
  • Сравнение и измерение отрезков и углов
  • Первый признак равенства треугольников
  • Перпендикуляр и наклонная в геометрии
  • Медианы, высоты и биссектрисы треугольника
Читайте также:  Если лицо прямоугольной формы какая подойдет стрижка

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Равнобедренный треугольник

Равнобедренный треугольник – треугольник, у которого две стороны равны между собой.

Равные стороны называются боковыми , третья сторона называется основанием .

Свойства равнобедренного треугольника

1. Углы при основании равны

2. Биссектриса, медиана и высота, проведенные к основанию совпадают между собой

3. Углы при основании равнобедренного треугольника вычисляются по следующей формуле:

,

где – угол напротив основания.

4. Биссектрисы, медианы и высоты, проведённые из углов при основании равны между собой

5. Центры вписанной и описанной окружностей лежат на медиане=высоте=биссектрисе, проведенной к основанию

Признаки равнобедренного треугольника

1. Если в треугольнике два угла равны, то он равнобедренный.

2. Если в треугольнике медиана является и высотой (биссектрисой), то такой треугольник равнобедренный.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Источник

Равнобедренный треугольник: свойства, признаки и формулы

Содержание:

  1. Свойства равнобедренного треугольника.
  2. Признаки равнобедренного треугольника.
  3. Формулы равнобедренного треугольника:
    • формулы длины стороны;
    • формулы длины равных сторон;
    • формулы высоты, медианы, биссектрисы равнобедренного треугольника.

Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, а третья сторона — основанием.

АВ = ВС — боковые стороны

Свойства равнобедренного треугольника

Свойства равнобедренного треугольника выражаются через 5 теорем:

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Читайте также:  Душевые уголки прямоугольные стекло

Доказательство теоремы:

Рассмотрим равнобедренный Δ ABC с основанием АС.

Боковые стороны равны АВ = ВС,

Следовательно углы при основании ∠ BАC = ∠ BСA.

Теорема о биссектрисе, медиане, высоте, проведенной к основанию равнобедренного треугольника

  • Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
  • Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
  • Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Доказательство теоремы:

  • Дан Δ ABC.
  • Из точки В проведем высоту BD.
  • Треугольник разделился на Δ ABD и ΔCBD.Эти треугольники равны, т.к. гипотенузы и общий катет у них равны (теорема Пифагора).
  • Прямые АС и BD называются перпендикуляром.
  • В Δ ABDи ΔBCD∠ BАD = ∠ BСD(из Теоремы 1).
  • АВ = ВС — боковые стороны равны.
  • Стороны АD = СD, т.к. точка Dотрезок делит пополам.
  • Следовательно Δ ABD =ΔBCD.
  • Биссектриса, высота и медиана это один отрезок — BD

Вывод:

  1. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.
  2. Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.
  3. Биссектриса равнобедренного треугольника, проведенная к основанию, является медианой и высотой.

Запомни! При решении таких задач опусти высоту на основание равнобедренного треугольника. Чтобы разделить его на два равных прямоугольных треугольника.

  • Теорема 5. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.

Доказательство теоремы:

Доказательство от противного.

  • Пусть треугольники не равны (а то треугольники были равны по первому признаку).
  • Пусть Δ A1B1C2 = Δ ABC, у которого вершина C2 лежит в одной полуплоскости с вершиной C1 относительно прямой A1B1. По предположению вершины C1 и C2 не совпадают. Пусть D – середина отрезка C1C2. Δ A1C1C2 и Δ B1C1C2 – равнобедренные с общим основанием C1C2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой C1C2. A1D и B1D имеют разные точки A1 и B1, следовательно, не совпадают. Но через точку D прямой C1C2 можно провести только одну перпендикулярную ей прямую.
  • Отсюда пришли к противоречию и теорему доказали.
Читайте также:  Батарейка прямоугольная с двумя пимпочками как называется

Признаки равнобедренного треугольника

  1. Если в треугольнике два угла равны.
  2. Сумма углов треугольника 180°.
  3. Если в треугольнике биссектриса является медианой или высотой.
  4. Если в треугольнике медиана является биссектрисой или высотой.
  5. Если в треугольнике высота является медианой или биссектрисой.

Формулы равнобедренного треугольника

Формулы сторон равнобедренного треугольника

  • b — сторона (основание)
  • а — равные стороны
  • a — углы при основании
  • b — угол образованный равными сторонами

Формулы длины стороны (основания — b):

  • b = 2a \sin( \beta /2)= a \sqrt
  • b = 2a \cos \alpha

Формулы длины равных сторон(а):

Формулы высоты, медианы, биссектрисы равнобедренного треугольника

  • L — высота=биссектриса=медиана
  • b — сторона (основание)
  • а — равные стороны
  • a — углы при основании
  • b — угол образованный равными сторонами

Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):

Формула высоты, биссектрисы и медианы, через стороны, (L):

Площадь равнобедренного треугольника

  • b — сторона (основание)
  • а — равные стороны
  • h — высота

Формула площади треугольника через высоту h и основание b, (S):

Источник

Поделиться с друзьями
Объясняем