Если расстояние от центра окружности до прямой равно радиусу окружности то прямая касается верно

Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность имеют только одну общую точку. r H M O. — презентация

Презентация была опубликована 8 лет назад пользователемВиктория Мишенина

Похожие презентации

Презентация на тему: » Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность имеют только одну общую точку. r H M O.» — Транскрипт:

2 Если расстояние от центра окружности до прямой равно радиусу, то прямая и окружность имеют только одну общую точку. r H M O

3 Касательная к окружности Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. А точка касания. о A p

4 Касательная к окружности. Теорема: касательная окружности перпендикулярна к радиусу,проведенному в точку касания. Доказательство: пусть p — касательная к окружности с центром O,А- точка касания.Докажем,что касательная p перпендикулярна к радиусу ОА. Предположим,что это не так. Тогда радиус ОА является наклонной к прямой p.Так как перпендикуляр, проведенный из точки O к прямой p, меньше наклонной OA, то расстояние от центра О окружности до прямой p меньше радиуса. Следовательно, прямая p и окружность имеют две общие точки.Но это противоречит условию: прямая p — касательная.Таким образом,прямая p перпендикулярна к радиусу OA. Теорема доказана. O A P

5 Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. По теореме о свойстве касательной 1 и 2 прямые, поэтому АВО и АСО прямоугольные. Они равны, так как имеют общую гипотенузу АО и равные катеты ОВ и ОС. Следовательно, АВ = АС и 3 = 4, что и требовалось доказать A O BC

6 Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна к этому радиусу, то она является касательной Из условия теоремы следует, что радиус является перпендикуляром, проведенным из центра окружности к данной прямой. Поэтому расстояние от центра окружности до прямой равно радиусу, и следовательно, прямая и окружность имеет только одну общую точку. Но это и означает, что данная прямая является касательной к окружности.

Читайте также:  Прямоугольная сумка с цепочкой

7 Угол с вершиной в центре окружности называется ее центральным углом. Пусть стороны центрального угла окружности с центром О пересекают ее в точках А и В. Центральному АОВ соответствуют две дуги с концами А и В. Если АОВ развернутый, то ему соответствуют две полуокружности. ALB = 180º O A B L

8 Если АОВ (центральный) неразвернутый, то говорят, что АВ, расположенная внутри этого угла, меньше полуокружности. Про дугу с концами А и В говорят, что она больше полуокружности. L O B A

9 Дугу окружности можно измерять в градусах. Если АВ окружности с центром в точке О меньше полуокружности или является полуокружностью, то ее градусная мера считается равной градусной мере центрального АОВ. B L A O L B O A

10 Если же АВ больше полуокружности, то ее градусная мера считается равной 360 º — АОВ ( центральный). ALB = 360 º — АОВ. L B O A

11 Угол вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным углом. Вписанный АВС опирается на АМС. B O C M A

12 Вписанный угол измеряется половиной дуги на которую он опирается Пусть АВС – вписанный угол окружности с центром О, опирающийся на АС. Докажем, что АВС = половине АС (на которую он опирается). Существует 3 возможных случая расположения луча ВО относительно АВС. Рассмотрим их.

13 Рассмотрим 1 случай расположения луча ВО относительно АВС. Например луч совпадает со стороной ВС в этом случае АС меньше полуокружности, поэтому АОС= АС. Так как АОС внешний угол равнобедренного АВО, а 1 и 2 при основании равнобедренного треугольника равны, то АОС = 1+ 2 = 2 1. Отсюда следует, что 2 1 = АС или АВС = 1 = 1/2 АС. O B 2 1 C A

14 Рассмотрим 2 случай, когда луч ВО делит АВС на два угла. В этом случае луч ВО пересекает АС в некоторой точке D. Точка D разделяет АС на две дуги: АD и DC. По доказанному в п.1 АВD = 1/2 AD и DBC= 1/2 DC. Складывая эти равенства попарно, получаем: ABD + DBC = 1/2 АD + 1/2 DC, или АВС= 1/2 АС. A B C D

AOD = 1 + 2 = 2 1 = AD, следовательно ABD = 1/2 AD. Аналогично: ВСО равнобедр. COD — внешний, следовательно СВD= 1/2 CD. Сл» title=»Рассмотрим 3 случай расположения луча ВО относительно АВС АВD равнобедренный, AOD — внешний, т.к. ABD — равнобедр. То 1 = 2 => AOD = 1 + 2 = 2 1 = AD, следовательно ABD = 1/2 AD. Аналогично: ВСО равнобедр. COD — внешний, следовательно СВD= 1/2 CD. Сл» > 15 Рассмотрим 3 случай расположения луча ВО относительно АВС АВD равнобедренный, AOD — внешний, т.к. ABD — равнобедр. То 1 = 2 => AOD = = 2 1 = AD, следовательно ABD = 1/2 AD. Аналогично: ВСО равнобедр. COD — внешний, следовательно СВD= 1/2 CD. Следовательно, АВС=1/2 АС A O B C D AOD = 1 + 2 = 2 1 = AD, следовательно ABD = 1/2 AD. Аналогично: ВСО равнобедр. COD — внешний, следовательно СВD= 1/2 CD. Сл»> AOD = 1 + 2 = 2 1 = AD, следовательно ABD = 1/2 AD. Аналогично: ВСО равнобедр. COD — внешний, следовательно СВD= 1/2 CD. Следовательно, АВС=1/2 АС A O B C D»> AOD = 1 + 2 = 2 1 = AD, следовательно ABD = 1/2 AD. Аналогично: ВСО равнобедр. COD — внешний, следовательно СВD= 1/2 CD. Сл» title=»Рассмотрим 3 случай расположения луча ВО относительно АВС АВD равнобедренный, AOD — внешний, т.к. ABD — равнобедр. То 1 = 2 => AOD = 1 + 2 = 2 1 = AD, следовательно ABD = 1/2 AD. Аналогично: ВСО равнобедр. COD — внешний, следовательно СВD= 1/2 CD. Сл»>

Читайте также:  Душевая кабина 70х100 прямоугольная с раздвижной дверью

16 РАССМОТРИМ 1 СЛЕДСТВИЕ ИЗ ТЕОРЕМЫ Вписанные углы, опирающиеся на одну и ту же дугу, равны.

17 Рассмотрим 2 следствие из теоремы Вписанный угол, опирающийся на полуокружность прямой.

Источник

Касательная и секущая к окружности

На плоскости прямая и окружность могут либо пересекаться друг с другом, либо не пересекаться:

Расстояние от центра O до прямой m равно длине перпендикуляра OA. Следовательно, расстояние от центра окружности до прямой всегда будет равно перпендикуляру, опущенному из центра окружности на прямую.

Если расстояние от центра окружности до прямой больше радиуса данной окружности, то прямая и окружность не пересекаются и не имеют общих точек:

Касательная

Если расстояние от центра окружности до прямой равно радиусу данной окружности, то прямая касается окружности и они имеют одну общую точку, такая прямая называется касательной к окружности:

Прямая m — касательная. Точка соприкосновения прямой и окружности, то есть их общая точка, называется точкой касания: точка A — точка касания.

Касательная – это прямая линия, имеющая с окружностью одну общую точку.

Секущая

Если расстояние от центра окружности до прямой меньше радиуса данной окружности, то прямая пересекает окружность и они имеют две точки касания, такая прямая называется секущей к окружности:

Секущая – это прямая линия, имеющая с окружностью две общие точки.

Источник

Математика

Урок 1: Касательная к окружности

  • Видео
  • Тренажер
  • Теория

Заметили ошибку?

Касательная к окружности.

Рассмотрим случаи взаимного расположения прямой и окружности.

Первый случай – расстояние от центра окружности до прямой меньше радиуса окружности. Если расстояние от центра окружности до прямой меньше радиуса окружности (d r), то прямая и окружность не имеют общих точек.

Теорема. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

Читайте также:  Tudor england royal white блюдо прямоугольное 28 см

Справедлива и обратная теорема.

Если прямая проходит через конец радиуса, лежащий на окружности, и перпендикулярна этому радиусу, то она является касательной.

Прямую и обратную теоремы можно объединить следующим образом:

Прямая является касательной к окружности тогда и только тогда, когда радиус, проведенный в точку касания, перпендикулярен ей.

Данная теорема означает, что если прямая является касательной, то радиус, проведенный в точку касания, перпендикулярен ей, и наоборот, из перпендикулярности ОА и р следует, что р – касательная, то есть, прямая и окружность имеют единственную общую точку.

Рассмотрим две касательные, проведенные из одной точки к окружности.

Теорема. Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проведенной через эту точку и центр окружности.

Источник

Если расстояние от центра окружности до прямой равно радиусу окружности то прямая касается верно

Какие из следующих утверждений верны?

1) Вписанные углы, опирающиеся на одну и ту же хорду окружности, равны.

2) Если радиусы двух окружностей равны 5 и 7, а расстояние между их центрами равно 3, то эти окружности не имеют общих точек.

3) Если радиус окружности равен 3, а расстояние от центра окружности до прямой равно 2, то эти прямая и окружность пересекаются.

4) Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Вписанные углы, опирающиеся на одну и ту же хорду окружности, равны.» — неверно, вписанные углы, опирающиеся на одну и ту же хорду окружности, равны, если их вершины лежат по одну сторону от хорды.

2) «Если радиусы двух окружностей равны 5 и 7, а расстояние между их центрами равно 3, то эти окружности не имеют общих точек.» — неверно, окружности имеют две общие точки.

3) «Если радиус окружности равен 3, а расстояние от центра окружности до прямой равно 2, то эти прямая и окружность пересекаются.» — верно, если расстояние от центра окружности до прямой меньше радиуса, то прямая и окружность имеют две общие точки.

4) «Если вписанный угол равен 30°, то дуга окружности, на которую опирается этот угол, равна 60°.» — верно, вписанный угол измеряется половиной дуги,на которую он опирается.

Источник

Поделиться с друзьями
Объясняем