Если один угол параллелограмма прямой то этот параллелограмм является прямоугольным

Если один угол прямой, то это прямоугольник

Одним из признаков прямоугольника является наличие одного прямого угла в параллелограмме. При этом оказывается, что все остальные углы параллелограмма также прямые. Поэтому такой параллелограмм — прямоугольник.

Можно сформулировать данный признак прямоугольника в виде теоремы:

Если один из углов параллелограмма прямой, то такой параллелограмм является прямоугольником.

Доказать это можно следующим образом:

Пусть дан параллелограмм ABCD, у которого угол A прямой: ∠A = 90°.

Как известно, одним из свойств параллелограмма является то, что в нем противоположные углы равны между собой. Противоположным для угла A является угол C. Значит, ∠C =∠A = 90°.

Как известно, сумма углов любого выпуклого четырехугольник (а параллелограмм им является) равна 360°. Это следует из формулы суммы углов для выпуклых многоугольников: 180° * (n — 2), где n — количество сторон. В свою очередь данная формула доказывается путем проведения диагоналей из одной вершины выпуклого многоугольника к остальным вершинам. Эти диагонали разбивают многоугольник на n — 2 треугольников. А как известно, сумма углов любого треугольника равна 180°.

Таким образом, так как сумма углов параллелограмма равна 360°, а два угла уже известны, и равны по 90°, то на два остальных угла приходится 180°:

∠B + ∠D = 360° – (∠C +∠A) = 360° – (90° + 90°) = 180°.

Углы B и D являются второй парой противоположных углов параллелограмма, а значит, равны друг другу: ∠B = ∠D. При этом их сумма равна 180°. Следовательно, каждый из этих углов равен половине от 180°. Эта половина будет равна 90°. Таким образом, ∠B = ∠D = 90°.

Читайте также:  Трапеция дворников акцент стартвольт

В результате доказано, что ∠A =∠B = ∠C =∠D = 90°. То есть, если в параллелограмме один угол прямой, то все остальные углы равны ему. А параллелограмм, у которого все углы прямые, — это прямоугольник.

Источник

Прямоугольник

Частным видом параллелограмма является прямоугольник.

Прямоугольником называют параллелограмм, у которого все углы прямые

ABCD — прямоугольник.

Особое свойство прямоугольника

Диагонали прямоугольника равны

Доказательство

Дано: ABCD — прямоугольник

Доказать: AC = DB

Доказательство:

Рассмотрим ABD иACB: ABCD — прямоугольник, А и B — прямые, ABD иACBпрямоугольные. AD = CB (по свойству параллелограмма). AB — общий катет, ABD =ACB (по двум катетам). А в равных треугольниках против соответственно равных углов лежат равные стороны, значит, AC = DB, что и требовалось доказать.

Теорема

Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник

Доказательство

Дано: ABCD — параллелограмм, AC = DB

Доказать: ABCD — прямоугольник

Доказательство:

Рассмотрим ABD иACB:

AC = DB (по условию), AD = BC (по свойству параллелограмма), AB — общая, ABD =ACB (по трем сторонам). А в равных треугольниках против соответственно равных сторон лежат равные углы, A = B. А в параллелограмме противоположные углы равны, значит A = C и В = D, A = В = C = D (1). A + В + C + D = 360 0 (2)(т.к. параллелограмм выпуклый четырёхугольник). Следовательно, из (2), учитывая (1), получаем, что A = В = C = D = 90 0 , ABCD — прямоугольник, что и требовалось доказать.

Теорема

Если один из углов параллелограмма прямой, то этот параллелограмм — прямоугольник

Доказательство

Дано: ABCD — параллелограмм, A = 90 0

Доказать: ABCD — прямоугольник

Доказательство:

Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180 0 , т.е. A + В = 180 0 , В = 180 0 A = 180 0 90 0 = 90 0

Противолежащие углы параллелограмма равны, A = C = 90 0 и В = D = 90 0

Итак: ABCD — параллелограмм (по условию), и все его углы прямые (по доказанному выше), ABCD — прямоугольник (по определению), что и требовалось доказать.

Две теоремы, доказанные выше, называют признаками прямоугольника.

Поделись с друзьями в социальных сетях:

Читайте также:  Какие проекции называют прямоугольным

Источник

Если один угол параллелограмма прямой то этот параллелограмм является прямоугольным

Какие из следующих утверждений верны?

1) Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.

2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.

3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.

4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.» — верно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.

2) «Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.» — верно, если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.

3) «Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.» — неверно, стороны параллелограмма параллельны и образуют односторонние углы, а сумма односторонних углов равна 180°.

4) «Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.» — верно, сумма углов выпуклого четырехугольника равна 360°.

Источник

Признаки прямоугольника

Средняя оценка: 4.6

Всего получено оценок: 275.

Средняя оценка: 4.6

Всего получено оценок: 275.

В этой статье мы поговорим о признаках прямоугольника. Выделим основные и рассмотри каждый в отдельности.

Определения

Основная часть доказательств основывается на том, что в четырехугольнике сумма углов равна 360 градусам.

Всего насчитывается 7 признаков прямоугольника. Для того, чтобы их применять нужно, прежде всего, вспомнить определения:

Читайте также:  Окружность грудной клетки ребенка по месяцам таблица у мальчиков

Прямоугольник это параллелограмм, у которого все углы прямые.

Параллелограмм это выпуклый четырехугольник, у которого все стороны попарно равны и параллельны.

Для того, чтобы определить выпуклый четырехугольник или нет нужно последовательно проводить через каждую из сторон фигуры линию. Если в каждом из 4 случаев (поскольку сторон 4) вся фигура будет оставаться по одну сторону от линии, то четырехугольник выпуклый.

Признаки

Перед нами параллелограмм. Как доказать, что он является прямоугольником? Воспользоваться одним из признаков:

  • Параллелограмм является прямоугольником, если один из углов – прямой.

В параллелограмме противоположные углы равны. Значит, если один из углов – прямой, то противоположный ему угол так же прямой, а два оставшихся равны между собой. Сумма всех углов четырехугольника 360 градусов.

Два угла прямые, значит остается 360-90*2=180. Эта сумма двух равных углов, значит, каждый из оставшихся углов прямой: 180/2=90. Если все углы параллелограмма прямые, то это прямоугольник.

Этот признак работает только для параллелограммов. В случае с четырехугольниками прямой угол может быть и у прямоугольной трапеции.

Для того, чтобы вокруг четырехугольника описать окружность, необходимо, чтобы противоположные углы в сумме давали 180 градусов. Противоположные углы в параллелограмме равны, значит 180/2=90 градусов составляет каждый угол. Значит это прямоугольник.

Это существенные признаки прямоугольников. Существуют так же дополнительные, которые сводятся к уже перечисленным. И главное, помните, что в математике важны определения. Признаки прямоугольного прямоугольника – неправильная формулировка. Прямоугольник всегда был, есть и будет прямоугольным.

Что мы узнали?

Мы разобрались как можно доказать, что параллелограмм или четырехугольник является параллелограммом, вспомнили некоторые определения и ознакомились с ведущим методом определения прямоугольника – по углам.

Источник

Поделиться с друзьями
Объясняем