Если гипотенуза треугольника является радиусом окружности то он прямоугольный

Если гипотенуза треугольника является радиусом окружности то он прямоугольный

Ключевые слова: треугольник, прямоугольный, катет, гипотенуза, теорема Пифагора, окружность

Треугольник называют прямоугольным, если у него есть прямой угол.
Прямоугольный треугольник имеет две взаимно перпендикулярные стороны, называемые катетами; третья его сторона называется гипотенузой.

  • По свойствам перпендикуляра и наклонных гипотенуза длиннее каждого из катетов (но меньше их суммы).
  • Сумма двух острых углов прямоугольного треугольника равна прямому углу.
  • Две высоты прямоугольного треугольника совпадают с его катетами. Поэтому одна из четырех замечательных точек попадает в вершины прямого угла треугольника.
  • Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
  • Медиана прямоугольного треугольника, проведенная из вершины прямоуго угла на гипотенузу, является радиусом описанной около этого треугольника окружности.

Рассмотрим произвольный прямоугольный треугольник АВС и проведем высоту СD = hc из вершины С его прямого угла.

Она разобьет данный треугольник на два прямоугольных треугольника АСD и ВСD; каждый из этих треугольников имеет с треугольником АВС общий острый угол и потому подобен треугольнику АВС.

Все три треугольника АВС, АСD и ВСD подобны между собой.

Из подобия треугольников определяются соотношения:

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника.

Геометрическая формулировка. В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.

Алгебраическая формулировка. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b:
a
2 + b 2 = c 2

Обратная теорема Пифагора. Для всякой тройки положительных чисел a, b и c, такой, что
a
2 + b 2 = c 2 ,
существует прямоугольный треугольник с катетами a и b и гипотенузой c.

Признаки равенства прямоугольных треугольников:

  • по катету и гипотенузе;
  • по двум катетам;
  • по катету и острому углу;
  • по гипотенузе и острому углу.


См. также:
Площадь треугольника, Равнобедренный треугольник, Равносторонний треугольник

Источник

Прямоугольный треугольник

Треугольник в геометрии представляет одну из основных фигур. Из предыдущих уроков вы знаете, что треугольник – это многоугольная фигура, которая имеет три угла и три стороны.

Треугольник называют прямоугольным, если у него есть прямой угол, который равен 90 градусов.
Прямоугольный треугольник имеет две взаимно перпендикулярные стороны, называемые катетами; третья его сторона называется гипотенузой. Гипотенуза является самой большой стороной этого треугольника.

  • По свойствам перпендикуляра и наклонных гипотенуза длиннее каждого из катетов (но меньше их суммы).
  • Сумма двух острых углов прямоугольного треугольника равна прямому углу.
  • Две высоты прямоугольного треугольника совпадают с его катетами. Поэтому одна из четырех замечательных точек попадает в вершины прямого угла треугольника.
  • Центр описанной окружности прямоугольного треугольника лежит в середине гипотенузы.
  • Медиана прямоугольного треугольника, проведенная из вершины прямоуго угла на гипотенузу, является радиусом описанной около этого треугольника окружности.

Свойства и особенности прямоугольных треугольников

I – е свойство. В прямоугольном треугольнике сумма его острых углов равна 90°. Против большей стороны треугольника лежит больший угол, а против большего угла лежит большая сторона. В прямоугольном треугольнике наибольшим углом, является прямоугольный угол. Если же в треугольнике самый большой угол имеет более 90°, то такой треугольник перестает быть прямоугольным, так как сумма всех углов превысить 180 градусов. Со всего этого следует, что гипотенуза является наибольшей стороной треугольника.

II – е свойство. Катет прямоугольного треугольника, который лежит против угла в 30 градусов, равен половине гипотенузе.

III – е свойство. Если же в прямоугольном треугольнике катет равняется половине гипотенузы, то и угол, который лежит напротив данного катета будет равен 30 градусам.

Источник

Прямоугольный треугольник

Прямоугольный треугольник – треугольник, в котором один угол прямой (то есть равен 90˚).

Сторона, противоположная прямому углу, называется гипотенузой прямоугольного треугольника.

Стороны, прилежащие к прямому углу, называются катетами .

Признаки равенства прямоугольных треугольников

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны ( по двум катетам ).

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны ( по катету и острому углу ).

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и острому углу ).

Если гипотенуза и катет одного прямоугольного треугольника равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны ( по гипотенузе и катету ).

Свойства прямоугольного треугольника

1. Сумма острых углов прямоугольного треугольника равна 90˚.

2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.

И обратно, если в треугольнике катет вдвое меньше гипотенузы, то напротив него лежит угол в 30˚.

3. Теорема Пифагора:

, где – катеты, – гипотенуза. Видеодоказательство

4. Площадь прямоугольного треугольника с катетами :

5. Высота прямоугольного треугольника, проведенная к гипотенузе выражается через катеты и гипотенузу следующим образом:

6. Центр описанной окружности – есть середина гипотенузы.

7. Радиус описанной окружности есть половина гипотенузы :

8. Медиана, проведенная к гипотенузе, равна ее половине

9. Радиус вписанной окружности выражается через катеты и гипотенузу следующим образом:

Тригонометрические соотношения в прямоугольном треугольнике смотрите здесь.

Источник

Прямоугольный треугольник: Признаки Равенства и Подобия

Определение

Прямоугольный треугольник — это треугольник, в котором один из углов прямой.

Гипотенуза в прямоугольном треугольнике — это сторона напротив прямого угла.


Катет в прямоугольном треугольнике
— это две стороны прилежащие к прямому углу.

Свойства прямоугольного треугольника

В прямоугольном треугольнике:

  1. Сумма острых углов 90˚.
  2. Катет, противолежащий углу в 30˚, равен половине гипотенузы.
  3. Медиана, проведенная к гипотенузе, равна ее половине.
  4. Центр описанной окружности — середина гипотенузы.

Формулы:

  1. Площадь прямоугольного треугольника равна
    половине произведения катетов:
  2. Радиус описанной окружности около прямоугольного
    треугольника равен половине гипотенузы:
  3. Радиус вписанной окружности в прямоугольный треугольник
    выражается следующим образом:
  4. Квадрат гипотенузы равен сумме квадратов катетов:

Признаки равенства прямоугольных треугольников

С помощью признаков равенства прямоугольных треугольников
можно доказать что прямоугольные треугольники равны.

  1. По двум катетам:
    Если два катета одного прямоугольного треугольника соответственно
    равны двум катетам другого прямоугольного треугольника,
    то такие треугольники равны.
  2. По катету и гипотенузе:
    Если катет и гипотенуза одного прямоугольного треугольника соответственно
    равны катету и гипотенузе другого прямоугольного треугольника,
    то такие треугольники равны.
  3. По гипотенузе и острому углу:
    Если гипотенуза и острый угол одного прямоугольного треугольника соответственно
    равны гипотенузе и острому углу другого прямоугольного треугольника,
    то такие треугольникиравны.
  4. По катету и острому углу:
    Если катет и острый угол одного прямоугольного треугольника соответственно
    равны катету и острому углу другого прямоугольного треугольника,
    то такие треугольники равны.

Признаки прямоугольного треугольника

С помощью признаков прямоугольного треугольника можно
доказать, что треугольник прямоугольный.

  1. По теореме Пифагора:
    Если квадрат стороны равен сумме квадратов двух других сторон,
    то треугольник прямоугольный.
  2. По центру описанной окружности:
    Если центр описанной окружности лежит на стороне треугольника,
    то треугольник прямоугольный.
  3. По медиане:
    Если медиана треугольника равна половине стороны, к которой она проведена,
    то треугольник прямоугольный.
  4. По площади:
    Если площадь треугольника равна половине произведения двух его сторон,
    то треугольник прямоугольный.
  5. По радиусу описанной окружности:
    Если радиус описанной окружности равен половине,
    то треугольник прямоугольный.

Признаки подобия прямоугольных треугольников

С помощью признаков подобия прямоугольных треугольников можно
доказать, что прямоугольные треугольники подобны.

Источник

Читайте также:  Доказать что треугольник мнк равнобедренный м 6 1
Поделиться с друзьями
Объясняем