Если диагонали трапеции равны то это прямоугольника

Диагонали прямоугольной трапеции равны

Здравствуйте!
Какое из следующих утверждений верно?

  1. Диагонали прямоугольной трапеции равны.
  2. Тупоугольный треугольник имеет три тупых угла.

Утверждение 1.
Диагонали прямоугольной трапеции равны.

Ответ.
Утверждение неверно.
Представим себе прямоугольную трапецию. Ее диагонали расположены под углами, отличными от прямых. Если два отрезка (диагонали), заключенные между двумя параллельными прямыми (основаниями), составляют угол, отличный от угла 90 градусов, то эти отрезки также будут отличаться своей длиной.

Утверждение 2.
Тупоугольный треугольник имеет три тупых угла.

Ответ.
Утверждение неверно.
Треугольник имеет три угла. Градусная мера тупого угла больше 90 градусов. Предположим, что у тупоугольного треугольника все три угла больше 90 градусов. Обозначим первый угол треугольника равный 90 + х, второй угол – 90 + у, а третий угол – 90 + z. Здесь х, у и z – переменные, у которых градусная мера больше нуля.
Известно, что сумма всех углов любого произвольного (а также и тупоугольного) треугольника равняется 180 градусам. Запишем равенство для предполагаемого случая:
90 + х + 90 + у + 90 + z = 180
180 + х + у + z = 180
Как видно из полученного уравнения, что такого быть не может и все три угла у тупоугольного треугольника не могут быть тупыми.
В тупоугольном треугольнике может быть только один тупой угол.

Источник

Прямоугольная трапеция: все формулы и примеры задач

Задачи с трапецией не кажутся сложными в ряде фигур, которые изучены ранее. Как частный случай рассматривается прямоугольная трапеция. А при поиске ее площади иногда бывает удобнее разбить ее на две уже знакомые: прямоугольник и треугольник. Стоит только немного подумать, и решение обязательно найдется.

Определение прямоугольной трапеции и ее свойства

У произвольной трапеции основания параллельны, а боковые стороны могут иметь произвольное значение углов к ним. Если рассматривается прямоугольная трапеция, то в ней одна из сторон всегда перпендикулярна основаниям. То есть два угла в ней будут равны 90 градусам. Причем они всегда принадлежат смежным вершинам или, другими словами, одной боковой стороне.

Каждая диагональ образует с ее меньшей боковой стороной прямоугольный треугольник. А высота, которая проведена из вершины с тупым углом, делит фигуру на две. Одна из них прямоугольник, а другая − прямоугольный треугольник. Кстати, эта сторона всегда равна высоте трапеции.

Какие обозначения приняты в представленных формулах?

Все величины, используемые в разных выражениях, которые описывают трапецию, удобно сразу оговорить и представить в таблице:

Величина Ее обозначение
a большее основание
b меньшее основание прямоугольной трапеции
c, h перпендикулярная к основаниям боковая сторона, высота
d наклонная боковая сторона
α острый угол
β тупой угол
м средняя линия трапеции
д1 меньшая диагональ
д2 большая диагональ

Формулы, которые описывают элементы прямоугольной трапеции

Самая простая из них связывает высоту и меньшую боковую сторону:

c = h.

Еще несколько формул для этой стороны прямоугольной трапеции:

с = d *sinα;

c = (a — b) * tg α;

c = √ (d 2 — (a — b) 2 ).

Первая вытекает из прямоугольного треугольника. И говорит о том, что катет к гипотенузе дает синус противолежащего угла.

В том же треугольнике второй катет равен разности двух оснований. Поэтому справедливо утверждение, которое приравнивает тангенс угла к отношению катетов.

Из того же треугольника можно вывести формулу, основываясь на знании теоремы Пифагора. Это третье записанное выражение.

d = (a — b) /cosα;

d = c / sin α;

d = √ (c 2 + (а – b) 2 ).

Первые две опять получаются из соотношения сторон в том же прямоугольном треугольнике, а вторая выводится из теоремы Пифагора.

Какой формулой можно воспользоваться для расчета площади?

Той, что дана для произвольной трапеции. Только нужно учесть, что высотой является сторона, перпендикулярная к основаниям.

S = (a + b) * h / 2.

Эти величины не всегда даны явно. Поэтому чтобы вычислить площадь прямоугольной трапеции, потребуется выполнить некоторые математические выкладки.

Как быть, если нужно вычислить диагонали?

В этом случае нужно увидеть, что они образуют два прямоугольных треугольника. Значит, всегда можно воспользоваться теоремой Пифагора. Тогда первая диагональ будет выражаться так:

d1 = √ (с 2 + b 2 )

или по-другому, заменив «с» на «h»:

d1 = √ (h 2 + b 2 ).

Аналогичным образом получаются формулы для второй диагонали:

d2 = √ (с 2 + b 2 ) или d2 = √ (h 2 + а 2 ).

Задача №1

Условие. Площадь прямоугольной трапеции известна и равна 120 дм 2 . Ее высота имеет длину 8 дм. Необходимо вычислить все стороны трапеции. Дополнительным условием является то, что одно основание меньше другого на 6 дм.

Решение. Поскольку дана прямоугольная трапеция, в которой известна высота, то сразу же можно сказать о том, что одна из сторон равна 8 дм, то есть меньшая боковая сторона.

Теперь можно сосчитать другую: d = √ (с 2 + (а – b) 2 ). Причем здесь сразу даны и сторона с, и разность оснований. Последнее равно 6 дм, это известно из условия. Тогда d будет равняться квадратному корню из (64 + 36), то есть из 100. Так найдена еще одна боковая сторона, равная 10 дм.

Сумму оснований можно найти из формулы для площади. Она будет равна удвоенному значению площади, разделенному на высоту. Если считать, то получается 240 / 8. Значит, сумма оснований — это 30 дм. С другой стороны, их разность равна 6 дм. Объединив эти уравнения, можно сосчитать оба основания:

а + b = 30 и а — b = 6.

Можно выразить а как (b + 6), подставить его в первое равенство. Тогда получится, что 2b будет равняться 24. Поэтому просто b окажется 12 дм.

Тогда последняя сторона а равна 18 дм.

Ответ. Стороны прямоугольной трапеции: а = 18 дм, b = 12 дм, с = 8 дм, d = 10 дм.

Задача №2

Условие. Дана прямоугольная трапеция. Ее большая боковая сторона равняется сумме оснований. Ее высота имеет длину 12 см. Построен прямоугольник, стороны которого равны основаниям трапеции. Необходимо вычислить площадь этого прямоугольника.

Решение. Начать нужно с искомого. Нужная площадь определится как произведение a и b. Обе эти величины не известны.

Потребуется использовать дополнительные равенства. Одно из них построено на утверждении из условия: d = а + b. Необходимо воспользоваться третьей формулой для этой стороны, которая дана выше. Получится: d 2 = с 2 + (a – b) 2 или (a + b) 2 = с 2 + (a – b) 2 .

Читайте также:  Как правильно делать шраги для трапеции

Необходимо сделать преобразования, подставив вместо с его значение из условия — 12. После раскрытия скобок и приведения подобных слагаемых получается, что 144 = 4 ab.

В начале решения шла речь о том, что а*b дает искомую площадь. Поэтому в последнем выражении можно заменить это произведение на S. Простой расчет даст значение площади. S = 36 см 2 .

Ответ. Искомая площадь 36 см 2 .

Задача №3

Условие. Площадь прямоугольной трапеции 150√3 см². Острый угол равняется 60 градусам. Такое же значение имеет угол между маленьким основанием и меньшей диагональю. Нужно вычислить меньшую диагональ.

Решение. Из свойства углов трапеции получается, что ее тупой угол равен 120º. Тогда диагональ делит его на равные, потому что одна его часть уже 60 градусов. Тогда и угол между этой диагональю и вторым основанием тоже 60 градусов. То есть треугольник, образованный большим основанием, наклонной боковой стороной и меньшей диагональю, является равносторонним. Таким образом, искомая диагональ будет равна а, как и боковая сторона d = а.

Теперь нужно рассмотреть прямоугольный треугольник. В нем третий угол равен 30 градусам. Значит катет, лежащий против него, равен половине гипотенузы. То есть меньшее основание трапеции равно половине искомой диагонали: b = a/2. Из него же нужно найти высоту, равную боковой стороне, перпендикулярной основаниям. Сторона с здесь катет. Из теоремы Пифагора:

Теперь осталось только подставить все величины в формулу площади:

150√3 = (a + a/2) * (a/2 * √3) / 2.

Решение этого уравнения дает корень 20

Ответ. Меньшая диагональ имеет длину 20 см.

Источник

Свойства прямоугольной трапеции

В данной публикации мы рассмотрим определение и основные свойства прямоугольной трапеции.

Напомним, трапеция называется прямоугольной, если углы при одной из ее боковых сторон прямые, т.е. равняются 90°.

Свойство 1

Два угла прямоугольной трапеции обязательно являются прямыми, принадлежат одной боковой стороне, а вершины данных углов – смежные.

Для рисунка выше:

Свойство 2

Одна из боковых сторон прямоугольной трапеции перпендикулярна ее основаниям.

На рисунке выше: AB ⊥ AD и AB ⊥ BC.

Свойство 3

Высота прямоугольной трапеции (h) совпадает с меньшей боковой стороной (AB), перпендикулярной основаниям.

Свойство 4

Каждая из диагоналей прямоугольной трапеции делит ее на два треугольника, один из которых, также, является прямоугольным.

  • Диагональ AC делит трапецию на треугольники ABC и ACD, причем ΔABC является прямоугольным с прямым углом в вершине B.
  • Диагональ BD делит трапецию на ΔABD (прямоугольный) и ΔBCD.

Примечание: остальные свойства, которые применимы ко всем видам трапеций, приведены в нашей публикации – “Что такое трапеция: определение, виды, свойства”.

Источник

Если у трапеции диагонали равны

(II признак равнобедренной трапеции)

Если у трапеции диагонали равны, то она — равнобедренная.

Дано: ABCD — трапеция,

Доказать: трапеция ABCD — равнобедренная.

1) Проведем высоты трапеции BF и CK:

2) Рассмотрим прямоугольные треугольники ACK и DBF.

AC=BD (по условию).

CK=BF (как высоты трапеции).

Следовательно, треугольники ACK и DBF равны (по катету и гипотенузе).

Из равенства треугольников следует равенство соответствующих углов:

3) Рассмотрим треугольники ABD и DCA.

BD=AC (по условию).

∠BDA=∠CAD (по доказанному).

AD — общая сторона.

Следовательно, треугольники ABD и DCA равны (по двум сторонам и углу между ними).

Из равенства треугольников следует равенство соответствующих сторон: AB=CD.

Следовательно, трапеция ABCD — равнобедренная (по определению).

Источник

Если диагонали трапеции равны то это прямоугольника

Какие из данных утверждений верны? Запишите их номера.

1) Каждая из биссектрис равнобедренного треугольника является его медианой.

2) Диагонали прямоугольника равны.

3) У любой трапеции боковые стороны равны.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Каждая из биссектрис равнобедренного треугольника является его медианой» — неверно, верным будет утверждение «Каждая из биссектрис равностороннего треугольника является его медианой».

2) «Диагонали прямоугольника равны» — верно, по свойству прямоугольника.

3) «У любой трапеции боковые стороны равны» — неверно, т. к. боковые стороны равны только у равнобедренной трапеции.

Какие из данных утверждений верны? Запишите их номера.

1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.

2) Диагональ трапеции делит её на два равных треугольника.

3) Если в ромбе один из углов равен 90° , то такой ромб — квадрат.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны» — верно,по признаку параллельных прямых.

2) «Диагональ трапеции делит её на два равных треугольника» — неверно; верным будет утверждение: «Диагональ параллелограмма делит его на два равных треугольника».

3) «Если в ромбе один из углов равен 90° , то такой ромб — квадрат» — верно, т. к. если один из углов ромба равен 90°, то и остальные равны 90°.

Какое из следующих утверждений верно?

1) Диагональ трапеции делит её на два равных треугольника.

2) Косинус острого угла прямоугольного треугольника равен отношению гипотенузы к прилежащему к этому углу катету.

3) Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу.

В ответ запишите номер выбранного утверждения.

Рассмотрим каждое из утверждений:

1) «Диагональ трапеции делит её на два равных треугольника» — неверно; верным будет утверждение: «Диагональ параллелограмма делит его на два равных треугольника».

2) «Косинус острого угла прямоугольного треугольника равен отношению гипотенузы к прилежащему к этому углу катету» — неверно; верным будет утверждение: «Косинус острого угла прямоугольного треугольника равен отношению прилежащего к этому углу катета к гипотенузе».

3) «Расстояние от точки, лежащей на окружности, до центра окружности равно радиусу» — верно по определению

Какое из следующих утверждений верно?

1) Диагонали ромба точкой пересечения делятся пополам.

2) В тупоугольном треугольнике все углы тупые.

3) Каждая из биссектрис равнобедренного треугольника является его высотой.

В ответ запишите номер выбранного утверждения.

Рассмотрим каждое из утверждений:

1) «Диагонали ромба точкой пересечения делятся пополам» — верно по свойству ромба.

2) «В тупоугольном треугольнике все углы тупые» — неверно, так как в тупоугольном треугольнике только один угол — тупой.

3) «Каждая из биссектрис равнобедренного треугольника является его высотой» — неверно, верным будет являться утверждение: «Каждая из биссектрис равностороннего треугольника является его высотой».

Укажите номера верных утверждений.

1) В тупоугольном треугольнике все углы тупые.

2) В любом параллелограмме диагонали точкой пересечения делятся пополам.

3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.

Проверим каждое из утверждений.

Читайте также:  Как чертить эллипс по окружности

1) «В тупоугольном треугольнике все углы тупые» — неверно, так как в тупоугольном треугольнике только один угол — тупой.

2) «В любом параллелограмме диагонали точкой пересечения делятся пополам» — верно; это свойство параллелограмма.

3) «Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка» — верно по свойству серединного перпендикуляра.

Какие из данных утверждений верны? Запишите их номера.

1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.

2) Диагональ трапеции делит её на два равных треугольника.

3) Квадрат диагонали прямоугольника равен сумме квадратов двух его смежных сторон.

Проверим каждое из утверждений.

1) «Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны» — верно, по признаку параллельности прямых.

2) «Диагональ трапеции делит её на два равных треугольника» — неверно, верным будет утверждение «Диагональ параллелограмма делит его на два равных треугольника».

3) «Квадрат диагонали прямоугольника равен сумме квадратов двух его смежных сторон» — верно, по теореме Пифагора.

Укажите номера верных утверждений.

1) Существует квадрат, который не является прямоугольником.

2) Если два угла треугольника равны, то равны и противолежащие им стороны.

3) Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны.

Проверим каждое из утверждений.

1) «Существует квадрат, который не является прямоугольником» — неверно, т. к. квадрат — частный случай прямоугольника.

2) «Если два угла треугольника равны, то равны и противолежащие им стороны» — верно, т. к. в треугольниках против равных сторон лежат равные углы.

3) «Внутренние накрест лежащие углы, образованные двумя параллельными прямыми и секущей, равны» — верно, по свойству параллельных прямых.

Укажите номера верных утверждений.

1) Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то треугольники подобны.

2) Сумма смежных углов равна 180°.

3) Любая высота равнобедренного треугольника является его биссектрисой.

Проверим каждое из утверждений.

1) «Если три стороны одного треугольника пропорциональны трём сторонам другого треугольника, то треугольники подобны» — верно, по третьему признаку подобия треугольников.

2) «Сумма смежных углов равна 180°» — верно, по теореме о смежных углах.

3) «Любая высота равнобедренного треугольника является его биссектрисой» — неверно, верным будет являться утверждение «Высота равнобедренного треугольника, проведённая к его основанию, является его биссектрисой».

Укажите номера верных утверждений.

1) Центры вписанной и описанной окружностей равнобедренного треугольника совпадают.

2) Существует параллелограмм, который не является прямоугольником.

3) Сумма углов тупоугольного треугольника равна 180°.

Проверим каждое из утверждений.

1) «Центры вписанной и описанной окружностей равнобедренного треугольника совпадают» — неверно, верным будет являтся утверждение: «Центры вписанной и описанной окружностей равностороннего треугольника совпадают».

2) «Существует параллелограмм, который не является прямоугольником» — верно, т. к. прямоугольник — частный случай параллелограмма.

3) «Сумма углов тупоугольного треугольника равна 180°» — верно, по свойству углов треугольника.

Какие из данных утверждений верны? Запишите их номера.

1) Каждая из биссектрис равнобедренного треугольника является его высотой.

2) Диагонали прямоугольника равны.

3) У любой трапеции основания параллельны.

Проверим каждое из утверждений.

1) «Каждая из биссектрис равнобедренного треугольника является его высотой» — неверно, верным будет являться утверждение: «Каждая из биссектрис равностороннего треугольника является его высотой».

2) «Диагонали прямоугольника равны» — верно по свойству диагоналей прямоугольника.

3) «У любой трапеции основания параллельны» — верно по определению трапеции.

Какие из данных утверждений верны? Запишите их номера.

1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.

2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.

3) У равнобедренного треугольника есть центр симметрии.

Проверим каждое из утверждений.

1) «Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности» — неверно, т. к. для того, чтобы утверждать, пересекаются окружности или нет, нужно ещё знать взаимное положение их центров.

2) «Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны» — верно; по признаку параллельных прямых.

3) «У равнобедренного треугольника есть центр симметрии» — неверно, верным будет утверждение: «У равнобедренного треугольника есть ось симметрии».

Какие из данных утверждений верны? Запишите их номера.

1) Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой.

2) Треугольник со сторонами 1, 2, 4 существует.

3) Сумма квадратов диагоналей прямоугольника равна сумме квадратов всех его сторон.

Проверим каждое из утверждений.

1) «Через точку, не лежащую на данной прямой, можно провести прямую, перпендикулярную этой прямой» — верно: это аксиома планиметрии.

2) «Треугольник со сторонами 1, 2, 4 существует» — неверно: для того, чтобы существовал треугольник, сумма любых его двух сторон должна быть больше третьей стороны.

3) «Сумма квадратов диагоналей прямоугольника равна сумме квадратов всех его сторон.» — верно, по свойству прямоугольника.

Какие из данных утверждений верны? Запишите их номера.

1) Вокруг любого треугольника можно описать окружность.

2) Если при пересечении двух прямых третьей прямой сумма внутренних односторонних углов равна 180° , то эти прямые параллельны.

3) Площадь треугольника не превышает произведения двух его сторон.

Проверим каждое из утверждений.

1) «Вокруг любого треугольника можно описать окружность» — верно, по свойству треугольника.

2) «Если при пересечении двух прямых третьей прямой сумма внутренних односторонних углов равна 180° , то эти прямые параллельны» — верно, по признаку параллельности прямых.

3) «Площадь треугольника не превышает произведения двух его сторон» — верно, поскольку площадь треугольника может быть найдена по формуле: где a и b — стороны треугольника, а — угол между ними и

Какие из данных утверждений верны? Запишите их номера.

1) Против большей стороны треугольника лежит меньший угол.

2) Любой квадрат можно вписать в окружность.

3) Площадь трапеции равна произведению средней линии на высоту.

Проверим каждое из утверждений.

1) «Против большей стороны треугольника лежит меньший угол» — неверно, против большей стороны треугольника лежит больший угол.

2) «Любой квадрат можно вписать в окружность» — верно, по свойству квадрата.

3) «Площадь трапеции равна произведению средней линии на высоту» — верно, по свойству трапеции.

Какие из данных утверждений верны? Запишите их номера.

1) У равнобедренного треугольника есть ось симметрии.

2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.

3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.

Проверим каждое из утверждений.

Читайте также:  Как сшить прямоугольную косметичку на молнии

1) «У равнобедренного треугольника есть ось симметрии» — верно, эта ось совпадает с биссектрисой, проведённой к основанию.

2) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат» — верно, т. к. среди всех параллелограммов только в квадрате диагонали равны и перпендикулярны.

3) «Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности» — неверно, т. к. для того, чтобы сказать пересекаются окружности или нет, нужно знать взаимное положение их центров.

Какие из данных утверждений верны? Запишите их номера.

1) Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой.

2) Треугольник со сторонами 1, 2, 4 существует.

3) Если в ромбе один из углов равен 90° , то такой ромб — квадрат.

Проверим каждое из утверждений.

1) «Через точку, не лежащую на данной прямой, можно провести прямую, параллельную этой прямой» — верно: это аксиома планиметрии.

2) «Треугольник со сторонами 1, 2, 4 существует» — неверно: для того, чтобы существовал треугольник, сумма любых его двух сторон должна быть больше третьей стороны.

3) «Если в ромбе хотя бы 2 угла равны 90°, то такой ромб — квадрат» — верно: в этом случае противоположный угол тоже будет равен 90°, а значит, и два других (равных) угла будут равны по 90°.

Какие из данных утверждений верны? Запишите их номера.

1) Против большей стороны треугольника лежит больший угол.

2) Любой прямоугольник можно вписать в окружность.

3) Площадь треугольника меньше произведения двух его сторон.

Проверим каждое из утверждений.

1) «Против большей стороны треугольника лежит больший угол» — верно, по свойству треугольника.

2) «Любой прямоугольник можно вписать в окружность» — верно; выпуклый четырёхугольник можно вписать в окружность тогда и только тогда, когда сумма противоположных углов этого четырёхугольника равна 180°.

3) «Площадь треугольника меньше произведения двух его сторон» — верно, поскольку площадь треугольника можно вычислить по формуле , где a и b — стороны треугольника, а — угол между этими сторонами. Так как не может быть больше 1, то и S не может превышать полупроизведения сторон.

Какие из данных утверждений верны? Запишите их номера.

1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.

2) В любом прямоугольнике диагонали взаимно перпендикулярны.

3) У равностороннего треугольника есть центр симметрии.

Проверим каждое из утверждений.

1) «Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны» — верно, по первому признаку подобия треугольников. Заметим, что в признаке подобия треугольников говорится о двух углах, однако если два угла одного треугольника соответственно равны двум углам другого треугольника, то и третий угол одного треугольника равен третьему углу другого.

2) «В любом прямоугольнике диагонали взаимно перпендикулярны» — неверно; верным будет утверждение: «В любом ромбе диагонали взаимно перпендикулярны».

3) «У равностороннего треугольника есть центр симметрии» — неверно, у равностороннего треугольника есть оси симметрии.

Какие из данных утверждений верны? Запишите их номера.

1) На плоскости существует единственная точка, равноудалённая от концов отрезка.

2) В любой треугольник можно вписать окружность.

3) Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом.

Проверим каждое из утверждений.

1) «На плоскости существует единственная точка, равноудалённая от концов отрезка» — неверно, т. к. существует бесконечное множество таких точек, и все они располагаются на серединном перпендикуляре.

2) «В любой треугольник можно вписать окружность» — верно, по свойству треугольника.

3) «Если в параллелограмме две смежные стороны равны, то такой параллелограмм является ромбом» — верно, т. к. если две смежные стороны равны, то и все стороны в параллелограмме равны.

Какие из данных утверждений верны? Запишите их номера.

1) Через две различные точки на плоскости проходит единственная прямая.

2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.

3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.

Проверим каждое из утверждений.

1) «Через две различные точки на плоскости проходит единственная прямая» — верно.

2) «Центром вписанной в треугольник окружности является точка пересечения его биссектрис» — верно, по свойству треугольника.

3) «Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны» — верно, по признаку равенства прямоугольных треугольников.

Какие из данных утверждений верны? Запишите их номера.

1) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.

2) Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб.

3) Площадь круга меньше квадрата длины его диаметра.

Проверим каждое из утверждений.

1) «Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны» — неверно; верным будет утверждение: «Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны».

2) «Если в четырёхугольнике диагонали перпендикулярны, то этот четырёхугольник — ромб» — неверно, т. к. не любой четырёхугольник является параллелограммом.

3) «Площадь круга меньше квадрата длины его диаметра» — верно, поскольку площадь круга вычисляется по формуле: , а

Какие из данных утверждений верны? Запишите их номера.

1) На плоскости существует единственная точка, равноудалённая от концов отрезка.

2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.

3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.

Проверим каждое из утверждений.

1) «На плоскости существует единственная точка, равноудалённая от концов отрезкат» — неверно, таких точек бесконечно много и все они лежат на серединном перпендикуляре к отрезку.

2) «Центром вписанной в треугольник окружности является точка пересечения его биссектрис» — верно, по свойству треугольника.

3) «Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны» — верно, по признаку равенства прямоугольных треугольников. Заметим, что в учебнике этот признак равенства прямоугольных треугольников записан так: «Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны», однако пропуск слова острому не меняет сути, так как острый угол может быть равен только острому углу.

Источник

Поделиться с друзьями
Объясняем