- Если диагонали параллелограмма делят его углы пополам то это ромб у которого
- Если диагонали параллелограмма делят его углы пополам то это ромб у которого
- Если диагонали параллелограмма делят его углы пополам то это ромб у которого
- Диагональ параллелограмма делит его углы пополам
- Если диагонали параллелограмма делят его углы пополам то это ромб у которого
Если диагонали параллелограмма делят его углы пополам то это ромб у которого
Какие из следующих утверждений верны?
1) Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.
4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.» — верно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
2) «Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.» — верно, если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) «Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.» — неверно, стороны параллелограмма параллельны и образуют односторонние углы, а сумма односторонних углов равна 180°.
4) «Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.» — верно, сумма углов выпуклого четырехугольника равна 360°.
Источник
Если диагонали параллелограмма делят его углы пополам то это ромб у которого
Какие из следующих утверждений верны?
1) Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.
4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.» — верно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
2) «Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.» — верно, если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) «Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.» — неверно, стороны параллелограмма параллельны и образуют односторонние углы, а сумма односторонних углов равна 180°.
4) «Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.» — верно, сумма углов выпуклого четырехугольника равна 360°.
Источник
Если диагонали параллелограмма делят его углы пополам то это ромб у которого
Какие из следующих утверждений верны?
1) Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.
4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.
Если утверждений несколько, запишите их номера в порядке возрастания.
Проверим каждое из утверждений.
1) «Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.» — верно, если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
2) «Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.» — верно, если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб.
3) «Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°.» — неверно, стороны параллелограмма параллельны и образуют односторонние углы, а сумма односторонних углов равна 180°.
4) «Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.» — верно, сумма углов выпуклого четырехугольника равна 360°.
Источник
Диагональ параллелограмма делит его углы пополам
Здравствуйте!
Нужно доказать, что диагональ параллелограмма делит его углы пополам.
Спасибо!
У ромба один из признаков указывает на то, что его диагонали делят углы ромба пополам.
Признак сформулирован в виде теоремы:
Если диагональ параллелограмма делит его углы пополам, то этот параллелограмм – ромб.
Докажем признак.
Доказательство.
Согласно признаку есть параллелограмм, у которого одна диагональ делит один из углов пополам.
Необходимо доказать, что у этого параллелограмма все стороны будут равными, поскольку именно этот признак указывает на то, что данная фигура является ромбом.
Рассмотрим ромб ABCD. Построим диагональ BD, которая делит угол B на два равных угла ABD и CBD.
Согласно определению параллелограмма его противоположные стороны параллельны, то есть сторона AD параллельна стороне BC. В таком случае диагональ BD является для данных прямых секущей. Получаем, что угол ABD равен углу CDB, а угол CBD равен углу ADB как внутренние накрест лежащие.
Согласно условию углы ABD и CBD равны, а это значит, что углы ADB и CDB также равны.
Следовательно, мы доказали, что если в параллелограмме диагональ делит один из углов пополам, то она делит на два равных угла и противоположный угол.
Все четыре угла, на которые разбивает диагональ параллелограмма его противоположные углы, равны. То есть у параллелограмма равны кроме внутренних накрест лежащих и односторонние углы при параллельных прямых и секущей.
Рассмотрим треугольник ABD.
Углы AВD и BDA равны. Следовательно, данный треугольник является равнобедренным с основанием BD и равными боковыми сторонами AB и AD. Этим мы доказали, что при делении диагональю угла параллелограмма пополам его соседние стороны также равны между собой.
Противоположные стороны параллелограмма равны. Таким образом, стороны AB и CD равны и стороны AD и BC равны. Но также стороны AB и AD равны. Следовательно, все стороны параллелограмма равны, а это признак ромба.
Утверждение доказано.
Источник
Если диагонали параллелограмма делят его углы пополам то это ромб у которого
Определение
Ромб – это параллелограмм, у которого все стороны равны.
Таким образом, ромб обладает всеми свойствами параллелограмма:
\(\sim\) противоположные углы ромба попарно равны;
\(\sim\) соседние углы ромба в сумме дают \(180^\circ\) ;
\(\sim\) диагонали точкой пересечения делятся пополам.
Теорема: свойство ромба
Диагонали ромба перпендикулярны и делят его углы пополам.
Доказательство
Рассмотрим ромб \(ABCD\) .
По определению ромба \(AB = AD\) , поэтому треугольник \(BAD\) равнобедренный. Так как ромб – параллелограмм, то его диагонали точкой \(O\) пересечения делятся пополам. Следовательно, \(AO\) – медиана равнобедренного треугольника \(BAD\) , а значит, высота и биссектриса этого треугольника. Поэтому \(AC\perp BD\) и \(\angle BAC = \angle DAC\) .
Теорема: признаки ромба
1. Если в параллелограмме диагонали перпендикулярны, то это – ромб.
2. Если в параллелограмме диагонали делят его углы пополам, то это – ромб.
3. Если в выпуклом четырехугольнике все стороны равны, то он – ромб.
Доказательство
1) Рассмотрим параллелограмм \(ABCD\) . Пусть \(AC\perp BD\) .
Т.к. в параллелограмме диагонали точкой пересечения делятся пополам, то в треугольнике \(ABD\) отрезок \(AO\) – медиана. Т.к. к тому же \(AO\) – высота (следует из условия), то \(\triangle ABD\) – равнобедренный, т.е. \(AB=AD\) . Т.к. у параллелограмма противоположные стороны равны, то отсюда следует, что все его стороны будут равны.
2) Пусть \(AC\) – биссектриса угла \(\angle A\) .
Т.к. в параллелограмме диагонали точкой пересечения делятся пополам, то в треугольнике \(ABD\) отрезок \(AO\) – медиана. Т.к. к тому же \(AO\) – биссектриса (следует из условия), то \(\triangle ABD\) – равнобедренный, т.е. \(AB=AD\) . Т.к. у параллелограмма противоположные стороны равны, то отсюда следует, что все его стороны будут равны.
3) Пусть \(ABCD\) – произвольный четырехугольник и \(AB=BC=CD=AD\) .
Т.к. противоположные стороны четырехугольника попарно равны, то он – параллелограмм. Т.к. у него все стороны равны, то по определению это ромб.
Источник