Если диагонали параллелограмма abcd перпендикулярны то abcd прямоугольник

Параллелограмм: свойства и признаки

О чем эта статья:

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

  1. В параллелограмме точка пересечения диагоналей делит их пополам.
  2. Любая диагональ параллелограмма делит его на два равных треугольника.
  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
  2. Биссектрисы углов, прилежащих к одной стороне параллелограмма пересекаются под прямым углом.
  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

  1. S = a × h, где a — сторона, h — высота.
  2. S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.
  3. Для ромба: S = 0,5 × (d1 × d2), где d1 и d2 — две диагонали.
    Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

  1. Противоположные стороны параллелограмма равны.
    ABCD — параллелограмм, значит, AB = DC, BC = AD.
  2. Противоположные углы параллелограмма равны.
    ABCD — параллелограмм, значит, ∠A = ∠C, ∠B = ∠D.
  3. Диагонали параллелограмма точкой пересечения делятся пополам.
    ABCD — параллелограмм, AC и BD — диагонали, AC∩BD=O, значит, BO = OD, AO = OC.
  4. Диагональ делит параллелограмм на два равных треугольника.
    ABCD — параллелограмм, AC — диагональ, значит, △ABC = △CDA.
  5. Сумма углов в параллелограмме, прилежащих к одной стороне, равна 180 градусам.
    ABCD — параллелограмм, значит, ∠A + ∠D = 180°.
  6. В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d1 2 + d2 2 = 2 × (a 2 + b 2 ).

А сейчас докажем теорему, которая основана на первых двух свойствах.

Читайте также:  Прямоугольная решетка амр 400х200

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

  1. AB = CD как противоположные стороны параллелограмма.
  2. ∠1 = ∠2 как накрест лежащие углы при пересечении секущей AC параллельных прямых AB и CD; ∠3 = ∠4 как накрест лежащие углы при пересечении секущей BD параллельных прямых AB и CD.
  3. Следовательно, треугольник AOB равен треугольнику COD по второму признаку равенства треугольников, то есть по стороне и прилежащим к ней углам, из чего следует:
    • CO = AO
    • BO = DO

Теорема доказана. Наше предположение верно.

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB || CD
  • AB = CD

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

  1. AC — общая сторона;
  2. По условию AB = CD;
  3. ∠1 = ∠2 как внутренние накрест лежащие углы при пересечении параллельных прямых AB и CD секущей АС.

Шаг 3. Из равенства треугольников также следует:

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB = CD
  • BC = AD

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

  • AC — общая сторона;
  • AB = CD по условию;
  • BC = AD по условию.

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

  • CO = OA;
  • DO = BO;
  • углы между ними равны, как вертикальные, то есть угол AOB равен углу COD.

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

Источник

Прямоугольник, ромб и квадрат

Прямоугольник – параллелограмм, у которого все углы прямые.

Диагональю прямоугольника называется любой отрезок, соединяющий две вершины противоположных углов прямоугольника. Периметром прямоугольника называется сумма длин всех сторон прямоугольника.

Свойства прямоугольника

  1. Противоположные стороны прямоугольника равны.
  2. Каждый угол прямоугольника равен 90°.
  3. Значит, противоположные углы равны и сумма углов, прилежащих к одной стороне, равна 180°.
  4. Диагонали прямоугольника точкой пересечения делятся пополам.
  5. Диагональ прямоугольника делит его на два равных прямоугольных треугольника.
  6. Накрест лежащие углы при диагонали равны.
  7. Диагонали прямоугольника равны.
  8. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности.
  9. Около любого прямоугольника можно описать окружность, при этом диагональ прямоугольника равна диаметру описанной окружности.

Признаки прямоугольника

  1. Если три угла четырехугольника прямые, то этот четырехугольник является прямоугольником.
  2. Если один угол параллелограмма прямой, то этот параллелограмм является прямоугольником.
  3. Если диагонали параллелограмма равны, то этот параллелограмм является прямоугольником.

Квадрат – это прямоугольник, у которого все стороны равны.

Свойства квадрата

Все свойства параллелограмма, ромба, прямоугольника верны и для квадрата.

  1. Все четыре стороны квадрата имеют одинаковую длину, то есть они равны.
  2. Противоположные стороны квадрата параллельны.
  3. Сумма углов квадрата равна 360°.
  4. Диагонали квадрата имеют одинаковые длины.
  5. Диагонали квадрата пересекаются под прямым углом, и разделяют друг друга пополам.
  6. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружностей.
  7. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружностей.
  8. Обе диагонали разделяют квадрат на четыре равные треугольника, причем эти треугольники одновременно и равнобедренные, и прямоугольные.

Признаки квадрата

  1. Если две смежные стороны прямоугольника равны, то этот прямоугольник является квадратом.
  2. Если диагонали прямоугольника перпендикулярны, то этот прямоугольник является квадратом.

Формулы определения длины диагонали квадрата:

Ромбом называется параллелограмм, у которого все стороны равны. Если у ромба все углы прямые, тогда он называется квадратом.

Свойства ромба

  1. Поскольку ромб – это параллелограмм, то все свойства параллелограмма верны для ромба.
  2. Противолежащие стороны равны.
  3. Противоположные углы равны.
  4. Диагонали точкой пересечения делятся пополам.
  5. Сумма углов, прилежащих к одной стороне, равна 180°.
  6. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4:
  1. Диагонали перпендикулярны.
  2. Диагонали являются биссектрисами его углов.
  3. Центром вписанной в ромб окружности будет точка пересечения его диагоналей.

Признаки ромба

  1. Если диагонали параллелограмма перпендикулярны, то параллелограмм – ромб.
  2. Если диагональ параллелограмма является биссектрисой его угла, то параллелограмм – ромб.

Источник

Геометрия. 8 класс

Выберите правильный ответ.

На диагонали квадрата как на стороне построен новый квадрат. Чему равна его диагональ, если сторона исходного квадрата равна 6 см?

Закончите предложения. Установите соответствие между признаком и фигурой.

Параллелограмм, у которого все стороны равны
и все углы равны, это…

Ромб, у которого все углы равны, это…

Параллелограмм, у которого диагонали
взаимно перпендикулярны, это…

Параллелограмм, у которого диагональ является
биссектрисой его угла, это…

Ромб, у которого один угол прямой, это…

Четырёхугольник, у которого диагонали равны
и точкой пересечения делятся пополам, это…

Выберите правильный ответ.

Расстояние от точки пересечения диагоналей квадрата до одной из сторон равно 7 см. Найдите периметр квадрата.

Установите соответствие между задачей и ответом к ней.

Середина стороны квадрата ABCD точка K
соединена с точкой пересечения диагоналей
квадрата, точкой O. Найдите угол KOD.

Диагональ прямоугольника образует угол 35°
с одной из его сторон. Найдите меньший угол
между диагоналями прямоугольника.

В ромбе ABCDС = 50°. Точка O – точка
пересечения диагоналей ромба. Найдите угол OBC.

Укажите неверные утверждения.

В прямоугольнике диагонали равны.

Если в параллелограмме диагонали перпендикулярны, то это ромб.

Четырёхугольник, у которого диагонали равны и точкой пересечения делятся пополам,
является ромбом.

Четырёхугольник, у которого диагонали равны и взаимно перпендикулярны,
является квадратом.

Четырёхугольник, у которого диагонали равны и имеют общую середину,
является квадратом.

Если два угла и две стороны четырёхугольника равны, то это прямоугольник.

Источник

Читайте также:  Какая форма брови подходит для прямоугольной формы лица
Поделиться с друзьями
Объясняем