Если четырехугольник описан около окружности то его стороны равны

Описанные четырехугольники

Определение 1 . Окружностью, вписанной в четырёхугольник, называют окружность, которая касается касается каждой из сторон четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, описанным около окружности или описанным четырёхугольником .

Замечание . В настоящем разделе мы рассматриваем только выпуклые четырёхугольники.

Теорема 1 . Если четырёхугольник описан около окружности, то суммы длин его противоположных сторон равны.

Доказательство . Рассмотрим четырёхугольник ABCD , описанный около окружности, и обозначим буквами E, F, G, H – точки касания сторон четырёхугольника с окружностью (рис.2).

AH = AE, BF = BE, CF = CG, DH = DG,

Складывая эти равенства, получим:

AH + BF + CF + DH =
= AD + BC,
AE + BE + CG + DG =
= AB + CD,

то справедливо равенство

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если у четырёхугольника суммы длин противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Доказательство . Рассмотрим четырёхугольник ABCD , длины сторон которого удовлетворяют равенству

и проведём биссектрисы углов BAD и CDA . Обозначим точку пересечения этих биссектрис буквой O , и опустим из точки O перпендикуляры OH, OE и OG на стороны AD, AB и CD соответственно (рис.3).

Следовательно, справедливы равенства

из которых вытекает, что точки H, E и G лежат на окружности с центром в точке O и радиусом OH , касающейся сторон четырёхугольника AD, AB и CD в точках H, E и G соответственно. При этом возможны два случая:

Окружность касается касается стороны BC (рис.4).

В этом случае четырёхугольник ABCD описан около окружности, и теорема доказана.

Окружность не касается стороны BC .

В этом случае касательная, проведенная к окружности из точки B , пересекает прямую DC в точке K , и возможны два случая:

    Точка K лежит между точками C и D (рис.5)

Рассмотрим случай 2а и приведём его к противоречию. В этом случае в силу того, что четырёхугольник ABKD является описанным, а также по условию теоремы справедливы равенства:

Последнее равенство утверждает, что в треугольнике BKC сумма двух сторон равна третьей стороне, что противоречит неравенству треугольника неравенству треугольника неравенству треугольника . Полученное противоречие доказывает, что случай 2а невозможен.

Совершенно аналогичные рассуждения позволяют заключить, что случай 2b также невозможен.

Итак, возможен и реализуется лишь случай 1.

Из доказательства теоремы 2 непосредственно вытекает

Теорема 3 . Биссектрисы всех внутренних углов описанного четырёхугольника пересекаются в одной точке – центре вписанной окружности.

В следующей таблице приводятся примеры четырёхугольников, в которые можно вписать окружность. Доказательства утверждений непосредственно вытекают из теорем 1 и 2 и предоставляются читателю в качестве несложных упражнений.

Примеры описанных четырёхугольников

Фигура Рисунок Утверждение
Ромб В любой ромб можно вписать окружность
Квадрат В любой квадрат можно вписать окружность
Прямоугольник В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом
Параллелограмм В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом
Дельтоид В любой дельтоид можно вписать окружность
Трапеция В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований
Ромб
Квадрат

В любой квадрат можно вписать окружность

Прямоугольник

В прямоугольник можно вписать окружность тогда и только тогда, когда он является квадратом

Параллелограмм

В параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом

Дельтоид Трапеция

В трапецию можно вписать окружность тогда и только тогда, когда у трапеции сумма длин боковых сторон рана сумме длин оснований

Источник

Вписанные и описанные четырехугольники

Вписанный четырехугольник — четырехугольник, все вершины которого лежат на одной окружности.
Очевидно, эта окружность будет называться описанной вокруг четырехугольника.

Описанный четырехугольник — такой, что все его стороны касаются одной окружности. В этом случае окружность вписана в четырехугольник.

На рисунке — вписанные и описанные четырехугольники и их свойства.

Ты нашел то, что искал? Поделись с друзьями!

Посмотрим, как эти свойства применяются в решении задач ЕГЭ.

. Два угла вписанного в окружность четырехугольника равны и . Найдите больший из оставшихся углов. Ответ дайте в градусах.

Сумма противоположных углов вписанного четырехугольника равна . Пусть угол равен . Тогда напротив него лежит угол в градусов. Если угол равен , то угол равен .

. Три стороны описанного около окружности четырехугольника относятся (в последовательном порядке) как . Найдите большую сторону этого четырехугольника, если известно, что его периметр равен .

Пусть сторона равна , равна , а . По свойству описанного четырехугольника, суммы противоположных сторон равны, и значит,

Получается, что равна . Тогда периметр четырехугольника равен . Мы получаем, что , а большая сторона равна .

. Около окружности описана трапеция, периметр которой равен . Найдите ее среднюю линию.

Мы помним, что средняя линия трапеции равна полусумме оснований. Пусть основания трапеции равны и , а боковые стороны — и . По свойству описанного четырехугольника,
, и значит, периметр равен .
Получаем, что , а средняя линия равна .

Еще раз повторим свойства вписанного и описанного четырехугольника.

Четырехугольник можно вписать в окружность тогда и только тогда, когда суммы его противоположных углов равны .

Четырехугольник можно описать вокруг окружности тогда и только тогда, когда суммы длин его противоположных сторон равны.

Докажите эти утверждения. Это задание особенно полезно тем, кто решает задачи второй части профильного ЕГЭ по математике.

Источник

Многоугольник. Свойства четырехугольников описанных около окружности.

Если все стороны какого-нибудь многоугольника (MNPQ) касаются окружности, то говорят, что этот многоугольник описан около окружности, или что окружность вписана в него.

Теорема.

В описанном выпуклом четырехугольнике суммы противоположных сторон равны.

Пусть ABCD будет описанный выпуклый четырехугольник, т.е. стороны его касаются окружности. Требуется доказать, что AB + CD = BC + AD.

Обратная теорема.

Если в выпуклом четырехугольнике равны суммы противоположных сторон, то в него можно вписать окружность.

Требуется доказать, что в него можно вписать окружность.

Пусть ABCD такой выпуклый четырехугольник, в котором: AB + CD = AD + BC.

Проведем биссектрисы BO и СO двух углов B и С. Эти прямые должны пересечься, потому что сумма углов NBO и NCO меньше 2d (так как B + C <4d). Точка пересечения биссектрис должна быть одинаково удалена от сторон AB, BС и СD. Поэтому, если эту точку возьмем за центр, а за радиус один из трех равных перпендикуляров OM, ON, OP, опущенных из O на стороны углов B и С, то окружность коснется сторон AB, BС и СD.

Докажем, что она коснется и четвертой стороны AD. Для этого предположим, что касательная, проведенная к нашей окружности из точки A, будет не AD, а какая-нибудь иная прямая, например, AE. Тогда получится описанный выпуклый четырехугольник ABСE, в котором, по доказанному выше, будем иметь:

Вычитая почленно первое равенство из второго, получаем:

т.е. разность двух сторон D ADE равна третьей стороне DE, что невозможно.

Значит, нельзя допустить, чтобы касательной к нашей окружности была прямая AE, лежащая ближе к центру O, чем AD.

Так же можно доказать, что касательной не может быть никакая прямая AE1, лежащая дальше от центра, чем AD. Значит, AD должна касаться окружности, т.е. в четырехугольник ABСD можно вписать окружность.

Источник

Вписанные и описанные четырехугольники

Окружность называют описанной около четырехугольника, если она проходит через все его вершины. Если четырехугольник является вписанным в окружность, то сумма его противолежащих углов равна 180°. Если в четырехугольнике сумма противолежащих углов равна 180°, то около него можно описать окружность. Окружность называют вписанной в четырехугольнике, если она касается всех его сторон.

Если четырехугольник, является описанным около окружности, то суммы его противолежащих сторон равны.

Если в выпуклом четырехугольнике суммы противолежащих сторон равны, то в него можно вписать окружность.

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Автор в друзьях: 2

У автора в друзьях: 3

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Описанный четырехугольник

Сегодня ты узнаешь некоторые теоремы, которые помогут тебе в решении, казалось бы, сложных задач по геометрии.

Но после прочтения этой статьи они станут легкими!

Ведь ты будешь знать все об описанном четырехугольнике!

Коротко о главном

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.

В буквах: \( \large AB+CD=AD+BC\)

Если в параллелограмм можно вписать окружность, то это – ромб.

Что такое описанный четырехугольник

Посмотри — сперва нарисуем:

А теперь напишем:

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

А что, разве не всегда существует такая окружность?

Ведь вон треугольник-то всегда является описанным – потому что во всякий треугольник можно вписать окружность. Чем же четырехугольник-то хуже? И вот оказывается, что чем-то, да хуже.

Представь себе, например, длинный прямоугольник.

Как вот в него, спрашивается, можно вписать окружность? Конечно, никак. И это лишь один из примеров четырехугольника, в которой НЕЛЬЗЯ вписать окружность.

А в какие же можно? Вот, оказывается есть такая теорема (утверждение то есть).

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.

Вот как это записывается в буквах:

\( \displaystyle a+c=b+d\)
или (то же самое)
\( \displaystyle AB+CD=AD+BC\)

Для лучшего понимания давай в буквальном смысле разберём на кусочки описанный четырехугольник. Смотри: пусть в четырехугольнике . «сидит» окружность.

Но тогда у нас есть огромное количество касательных! Ты ещё помнишь, что отрезки касательных, проведённых из одной точки, равны? Ну, вот, значит

\( \displaystyle BK=BN\) (обозначим \( \displaystyle x\))

\( \displaystyle CK=CL\) (обозначим \( \displaystyle y\))

\( \displaystyle DL=DM\) (обозначим \( \displaystyle z\))

\( \displaystyle AM=AN\) (обозначим \( \displaystyle u\))

А теперь получилось, что

\( \displaystyle \left| \beginAB=x+u\\CD=y+z\end \right.\Rightarrow AB+CD=x+y+z+u\)

\( \displaystyle \left| \beginBC=x+y\\AD=u+z\end \right.\Rightarrow BC+AD=x+y+z+u\)

То есть \( \displaystyle AB+CD=AD+BC\)! Здорово, правда?

А теперь получим простое, но красивое следствие из этой теоремы.

Следствие. Если в параллелограмм можно вписать окружность, то это ромб.

Почему? Давай разберёмся. Пусть есть параллелограмм \( \displaystyle ABCD\).

Раз параллелограмм, то \( \displaystyle AB=CD,

AD=BC\) (вспоминаем свойства параллелограмма). Обозначим \( \displaystyle \text=\text\) буквой \( \displaystyle a\), а \( \displaystyle \text=\text\) буквой \( \displaystyle b\).

А теперь применим теорему. \( \displaystyle ABCD\) описанный \( \displaystyle \Rightarrow a+a=b+b\), то есть \( \displaystyle a=b\) – вот и получился ромб.

Видишь, как сработала теорема?

Вот и ты, если видишь в задачке надпись «в четырёхугольник вписана окружность» или, конкретнее, скажем, «в трапецию вписана окружность», то сразу вспоминай, что \( \displaystyle AB+CD=AD+BC\), – и задача решится!

Ну… или не сразу решится, но этот факт непременно тебе поможет.

Доказательство теоремы об окружности, вписанной в четырехугольник

Четырехугольник называется описанным, если существует окружность, касающаяся всех его сторон.

Давай прежде всего осознаем, что, в отличие от треугольника, далеко не во всякий четырехугольник можно поместить окружность так, чтобы она касалась всех его сторон.

А раз так, то математики, конечно же, не могли успокоиться, пока не придумали теорему, которая сообщит нам, что же такое нужно требовать от четырехугольника, чтобы в него можно было поместить окружность, касающуюся всех сторон.

И вот эта теорема:

В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.

\( \large a+c=b+d\)
или (в других буквах)
\( \large AB+CD=AD+BC\)

Заметь, что (как всегда) слова «тогда и только тогда» означают сразу два утверждения: «туда» и «обратно». Итак, если подробнее, то теорема утверждает:

(Вспоминаем Алису с безумным шляпником и их «ем то, что вижу» и «вижу то, что ем»)

А теперь – доказательство!

Пункт 1 вообще ОЧЕНЬ лёгкий. Смотри:

Пусть в \( ABCD\) вписана окружность. Тогда получается из точек \( A,B,C,\) и \( D\) проведено по две касательных, которые равны!

(Вспоминаем о равенстве отрезков касательных проведённых из одной точки)

\( \displaystyle BK=BN\) (обозначим \( x\))

\( \displaystyle CK=CL\) (обозначим \( y\))

\( \displaystyle DL=DM\) (обозначим \( z\))

\( \displaystyle AM=AN\) (обозначим \( u\))

И теперь получается, что

\( \displaystyle \Rightarrow AB+CD=AD+BC!\)

Обе этих суммы состоят из одинаковых кусочков, просто взятых в разном порядке.

Готово: пункт 1 доказали.

А теперь, наоборот, пункт 2.

Пусть в \( \displaystyle ABCD\) выполняется \( \displaystyle AB+CD=AD+BC\)

Чтобы что-то понять, впишем окружность сперва в такую «кастрюлю» – \( \displaystyle ABCD\) без стороны \( \displaystyle AD\).

Обрати внимание, что это всегда можно сделать – центром \( \displaystyle O\) такой окружности будет пересечение биссектрис углов \( \displaystyle B\) и \( \displaystyle C\).

Ну вот, в «кастрюле» сидит окружность. При этом сторона \( \displaystyle AD\), если она НЕ касается этой окружности, может либо пересекать её, либо вовсе не иметь с ней общих точек.

Разберём эти случаи и убедимся, что оба они ведут к противоречию.

Пусть \( \displaystyle AD\) пересекает окружность. Давай тогда проведём \( \displaystyle A<_<1>>\), которая будет касаться окружности.

По пункту 1 для четырехугольника \( \displaystyle ABC<_<1>>\) должно быть

а по условию для четырехугольника \( \displaystyle ABCD\)

Значит (вычитаем нижнее равенство из верхнего)

То есть \( \displaystyle D<_<1>>+AD=A<_<1>>\)

Но так СОВСЕМ не может быть – нарушается неравенство треугольника для \( \Delta AD<_<1>>\):

Вот и противоречие. Поэтому точно выяснили, что \( AD\) НЕ МОЖЕТ пересекать окружность.

Пусть теперь \( AD\) «не дотягивается» до окружности:

Источник

Читайте также:  Как узнать большую высоту параллелограмма
Поделиться с друзьями
Строю.ру
Adblock
detector