Если abcd параллелограмм то как найти его площадь

Содержание
  1. Как найти площадь параллелограмма — три основных формулы
  2. Формулы для расчета площади параллелограмма
  3. Как найти площадь параллелограмма, если известны сторона и высота
  4. Формула площади параллелограмма, если известны стороны и угол
  5. Как найти площадь параллелограмма через диагонали
  6. Комментарии и отзывы (1)
  7. Как найти площадь параллелограмма
  8. Онлайн калькулятор
  9. Зная длину стороны a и длину высоты h
  10. Формула
  11. Пример
  12. Зная длины сторон a и b, и угол α
  13. Формула
  14. Пример
  15. Зная длины сторон a и b, и угол β
  16. Формула
  17. Пример
  18. Зная длины сторон a и b, и длину диагонали (d1 или d2)
  19. Формула
  20. Пример
  21. Зная длины диагоналей d1 и d2, и угол между ними γ
  22. Формула
  23. Пример
  24. Площадь параллелограмма
  25. Площадь параллелограмма по основанию и высоте параллелограмма
  26. Площадь параллелограмма по стороне и высоте, опущенной на эту сторону
  27. Площадь параллелограмма по двум сторонам и углу между ними
  28. Площадь параллелограмма по двум диагоналям и углу между этими диагоналями
  29. Площадь параллелограмма по вписанной окружности и стороне
  30. Площадь параллелограмма по вписанной окружности и углу между сторонами
  31. Таблица с формулами площади параллелограмма
  32. Определения
  33. Нахождение площади параллелограмма: формула и примеры
  34. Формула вычисления площади
  35. По длине стороны и высоте
  36. По двум сторонам и углу между ними
  37. По двум диагоналям и углу между ними
  38. Примеры задач
  39. Как найти площадь параллелограмма
  40. Формулы
  41. Примеры вычисления площади параллелограмма
  42. Остались вопросы?

Как найти площадь параллелограмма — три основных формулы

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Эта статья на еще одну математическую тему. Мы расскажем, как правильно посчитать площадь параллелограмма. Эту тему подробно изучают только в 8-м классе. И это говорит, что она не такая простая.

Но для начала давайте все-таки напомним, какая фигура называется параллелограммом.

Параллелограмм – это разновидность четырехугольников, у которого противоположные стороны параллельны друг другу.

Классический параллелограмм выглядит вот так:

Впервые об этой фигуре подробно написал древнегреческий математик Евклид в своем известном произведении «Начала». Он же рассказал и о двух частных случаях параллелограмма, которые нам сегодня хорошо известны.

Это и прямоугольник, у которого противоположные стороны не только параллельны друг другу, но и пересекаются под прямым углом. И квадрат, у которого помимо параллельности противоположных сторон, все стороны еще и равны между собой.

И наконец, не лишним будет вспомнить, что подразумевается под термином «площадь».

Площадь геометрической фигуры – это размер плоскости, которая находится внутри сторон фигуры.

Ну а теперь объединим эти два понятия и расскажем, как надо считать площадь параллелограмма.

Формулы для расчета площади параллелограмма

Есть три основных формулы для вычисления площади параллелограмма:

  1. если известна длина стороны и высота, проведенная к ней;
  2. если известны длины сторон и углы между ними;
  3. если известны длины диагоналей и угол между ними.

Теперь о каждом из этих способов подробнее.

Как найти площадь параллелограмма, если известны сторона и высота

Возьмем для примера такой параллелограмм:

В нем указаны две высоты – BE и BF. Напомню, что высота — это отрезок, который опускается из вершины на противоположную сторону под прямым углом.

В данном случае площадь считается весьма просто. Надо всего лишь перемножить длину высоты и длину стороны, к которой она проведена.

И то же самое касается, если знать длины стороны DC и высоты BF. Тогда для вычисления площади достаточно их перемножить.

Кстати, у этой формулы есть весьма интересное доказательство. Так как у параллелограмма противоположные стороны параллельны и равны, то можно взять треугольник ABE и переставить его к стороне CD. Вот так это будет выглядеть:

В результате мы получим прямоугольник, у которого нам известны длины обеих сторон (высота параллелограмма превратилась в одну из сторон). А как известно, площадь прямоугольника равна произведению его сторон.

Формула площади параллелограмма, если известны стороны и угол

Площадь параллелограмма можно посчитать, если известны длины обеих его сторон и величина острого угла между ними.

Собственно, этот способ вытекает из предыдущего, Просто по исходным данным нужно вычислить высоту параллелограмма, а уже потом по ней посчитать площадь.

Согласно тригонометрии, синус острого угла в прямоугольнике равен отношению противоположного катета к гипотенузе. В нашем примере таким катетом является высота, а гипотенузой сторона «а». И получается:

Соответственно, чтобы посчитать значение высоты надо:

И наша конечная формула для расчета площади будет выглядеть следующим образом:

Как найти площадь параллелограмма через диагонали

Этот способ используется крайне редко, но знать его все равно нужно. Во всяком случае, на экзаменах у школьников такие примеры вполне могут встретиться.

В данном случае для вывода формулы используются весьма непростые математические вычисления. И мы не будем ими вас загружать. А просто покажем конечный результат:

Соответственно, здесь d1 и d2 – длины диагоналей, а y – острый угол между ними.

Вот и все, что мы хотели рассказать о вычислении площади параллелограмма.

Читайте также:  Прямоугольная шапочка спицами для новорожденного

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Комментарии и отзывы (1)

Ну самую простую (основание на высоту) знают все, а вот остальные вспомнить было трудно.

Я еще со школы помню, что можно через окружность вписанную и сторону вычислить. Это будет 2 * на сторону * на радиус окружности. Также есть еще возможность найти по радиусу и углу между сторонами, но эти формулы используются редко, но для каких-то задач возможно пригодятся.

Источник

Как найти площадь параллелограмма

Онлайн калькулятор

Параллелограмм – это четырёхугольник, у которого противоположные стороны параллельны друг другу.

Узнать чему равна площадь параллелограмма (S) можно зная (либо-либо):

  • длину стороны a и длину высоты h
  • длины сторон a и b, и угол α
  • длины сторон a и b, и угол β
  • длины сторон a и b, и длину любой из диагоналей (d1 или d2)
  • длины диагоналей d1 и d2, и угол между ними γ

Подставьте значения в соответствующие поля и получите результат.

Зная длину стороны a и длину высоты h

Чему равна площадь параллелограмма S если известны длина стороны a и длина высоты h, проведенной к этой стороне?

Формула

Пример

Если сторона параллелограмма a = 8 см, а высота h = 4 см, то:

S = 8 ⋅ 4 = 32 см 2

Зная длины сторон a и b, и угол α

Чему равна площадь параллелограмма S если известны длины сторон a и b, и угол между ними α?

Формула

Пример

Если сторона параллелограмма a = 8 см, сторона b = 5 см, а ∠α = 50° то:

S = 8 ⋅ 5 ⋅ sin 50 = 40 ⋅ 0.766 ≈ 30.64 см 2

Зная длины сторон a и b, и угол β

Чему равна площадь параллелограмма S если известны длины сторон a и b, и угол между ними β?

Формула

Пример

Если сторона параллелограмма a = 8 см, сторона b = 5 см, а ∠β = 130° то:

S = 8 ⋅ 5 ⋅ sin(180-130) = 40 ⋅ 0.766 ≈ 30.64 см 2

Зная длины сторон a и b, и длину диагонали (d1 или d2)

Чему равна площадь параллелограмма S если известны длины сторон a и b, и длина любой из диагоналей d?

Формула

S = 2 √ p⋅(p-a)⋅(p-b)⋅(p-d) , где p=(a+b+d)/2

Пример

Если сторона параллелограмма a = 8 см, сторона b = 5 см, а диагональ d = 11 см то:

p = (8 + 5 +11)/2 = 12

S = 2 √ 12⋅(12-8)⋅(12-5)⋅(12-11) = 2⋅ √ 12⋅4⋅7⋅1 = 2⋅ √ 336 = 36.66 см 2

Зная длины диагоналей d1 и d2, и угол между ними γ

Чему равна площадь параллелограмма S если известны длины диагоналей d1 и d2, и угол между ними γ?

Формула

Пример

Если диагональ параллелограмма d1 = 11 см, диагональ d2 = 7 см, а ∠γ = 45° то:

S = ½ ⋅ 11 ⋅ 7 ⋅ sin 45 = 38.5 ⋅ 0.7071 ≈ 27.22 см 2

Источник

Площадь параллелограмма

Площадь параллелограмма, формулы и калькулятор для вычисления площади в режиме онлайн.

Для вычисления площади параллелограмма применяются различные формулы, в зависимости от известных исходных данных. Ниже приведены формулы и калькулятор для вычисления площади в режиме онлайн.

Площадь параллелограмма – это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками (сторонами), у которой противоположные стороны попарно параллельны и равны между собой.

Площадь параллелограмма по основанию и высоте параллелограмма

Площадь параллелограмма по стороне и высоте, опущенной на эту сторону

Площадь параллелограмма по двум сторонам и углу между ними

Площадь параллелограмма по двум диагоналям и углу между этими диагоналями

Площадь параллелограмма по вписанной окружности и стороне

Данная формула применима только для параллелограммов, в которые можно вписать окружность. Таким параллелограммом может являться только ромб.

Площадь параллелограмма по вписанной окружности и углу между сторонами

Данная формула применима только для параллелограммов, в которые можно вписать окружность. Таким параллелограммом может являться только ромб.

Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°

Таблица с формулами площади параллелограмма

исходные данные
(активная ссылка для перехода к калькулятору)
эскиз формула
1 основание и высота
2 сторона и высота,
опущенная на эту сторону
3 две стороны и угол между ними
4 диагонали и угол между ними
5 вписанная окружность и сторона
6 вписанная окружность и угол между сторонами

Определения

Параллелограмм — это геометрическая фигура, образованная четырьмя последовательно соединенными отрезками (сторонами), у которой противоположные стороны попарно параллельны и равны между собой.

Высота параллелограмма – это отрезок проведенный из вершины параллелограмма к противоположной стороне под углом в 90 градусов.

Некоторые свойства параллелограмма:

  • Сумма углов параллелограмма равна 360 градусов
  • Сумма углов, прилегающих к любой из сторон равна 180 градусов
  • Противоположные стороны параллельны и имеют одинаковую длину
  • Противолежащие углы равны

Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.

Источник

Нахождение площади параллелограмма: формула и примеры

Параллелограмм – это геометрическая фигура; четырехугольник, у которого противоположные стороны равны и параллельны.

Формула вычисления площади

По длине стороны и высоте

Площадь параллелограмма (S) равняется произведению длины его стороны и высоты, проведенной к ней:

S = a ⋅ h

По двум сторонам и углу между ними

Площадь параллелограмма находится путем умножения длин его обеих сторон и синуса угла между ними:

Читайте также:  Запчасти для трапеции стеклоочистителя

S = a ⋅ b ⋅ sin α

По двум диагоналям и углу между ними

Площадь параллелограмма равна одной второй произведения длин его диагоналей, умноженного на синус угла между ними:

Примеры задач

Задание 1
Найдите площадь параллелограмма, если длина его стороны равняется 7 см, а высоты – 4 см.

Решение:
Используем первую формулу, в которой задействованы известные нам по условиям задания значения: S = 4 см * 7 см = 28 см 2 .

Задание 2
Найдите площадь параллелограмма, если его стороны равны 6 и 8 см, а угол между ними – 30°.

Решение:
Применим вторую формулу, рассмотренную выше: S = 6 см * 8 см * sin 30° = 24 см 2 .

Задание 3
Найдите площадь параллелограмма с диагоналями, равными 4 и 6 см. Угол между ними составляет 90°.

Решение:
Воспользуемся формулой, в которой фигурируют диагонали: S = 1/2 * 4 см * 6 см * sin 90° = 12 см 2 .

Источник

Как найти площадь параллелограмма

Формулы

Первый способ. Чтобы найти площадь параллелограмма (рис. 1), нужно найти произведение стороны $a$ параллелограмма на высоту $h_a$, проведенную к этой стороне, то есть

Второй способ. Чтобы найти площадь параллелограмма, надо найти произведение двух его смежных сторон $a$ и $b$, умноженное на синус угла $\alpha$ между ними (рис. 2):

Третий способ. Чтобы найти площадь параллелограмма, надо найти полупроизведение его диагоналей $d_1$ и $d_2$ на синус угла $\beta$ между ними (рис. 3):

Примеры вычисления площади параллелограмма

Задание. Найти площадь параллелограмма, если его сторона равна 2 см, а высота, проведенная к этой стороне — 3 см.

Решение. Искомая площадь равна

Ответ. $S=6$ (см 2 )

Задание. Найти площадь параллелограмма, одна сторона которого равна 4 см, вторая на 3 см больше и тупой угол параллелограмма равен $120^<\circ>$.

Решение. Найдем вторую сторону параллелограмма:

Так как сумма углов параллелограмма, прилежащих к одной стороне, равна $180^<\circ>$, то делаем вывод, что угол между сторонами равен

Тогда искомая площадь равна

Ответ. $\mathrm=14 \sqrt<3>$ (см 2 )

Остались вопросы?

Здесь вы найдете ответы.

Параллелограмм следует расположить по горизонтали. Обозначим его верхнее основание как АВ, а противоположное ему основание – как CD. Из точек ВЕ и AF проведем перпендикулярные прямые на нижнее основание фигуры. В результате получится прямоугольник ABEF. Площадь образовавшейся прямоугольной фигуры равна площади параллелограмма по той причине, что параллелограмм ABCD и фигура с прямыми углами ABEF являются равносоставленными, о чем свидетельствует равенство треугольников ВEC и DAF.

Площадь (S) прямоугольника представляет собой произведение длин сторон EF и FA, которое, в свою очередь, равно:

Именно это и требовалось доказать.

Обозначим имеющийся параллелограмм как АВСD. Тогда одна его сторона АВ равна 26 см, а другая АD – 32 см. Угол АВС параллелограмма составляет 150 градусов.

Принимая во внимание тот факт, что сумма внутренних односторонних углов параллелограмма равна 180 градусов, можно говорить о том, что его угол ВАD составляет 30 градусов. Проведем высоту ВК, и в итоге получим треугольник АВК с прямым углом. Длина опущенной высоты как катета, расположенного противоположно углу в 30 градусов, равна 13 см. Площадь (S) параллелограмма есть число, полученное в результате умножения длины высоты на длину стороны. Это значит, что:

S (АВСD) = 13 *32 = 416 см кв.

Ответ: Площадь параллелограмма равна 416 см кв.

Прямая АС представляет собой диагональ биссектрисы. В этом случае образовавшиеся посредством ее проведения треугольники FMD и АDС являются подобными по причине наличия общего угла А и равенства сторон. На основании этого можно говорить о том, что:

SFDM=1/2 *2a*2b sin a

Теперь можно рассчитать площадь параллелограмма (S), которая будет равна 2*х:

S = 128*2 = 256 см кв.

Ответ: Площадь параллелограмма равна 256 см кв.

Обозначим угол в 150 градусов буквой В. Зная о том, что внутренние односторонние углы параллелограмма в сумме дают 180 градусов, можно вычислить второй угол А. Он будет равен:

∠А = 180-150 = 30 градусов.

Теперь следует провести высоту ВВ1, которая образует треугольник АВВ1, являющийся прямоугольным. Длина ВВ1 будет равна половине длины стороны, равной 6 см:

Тогда площадь (S) параллелограмма можно рассчитать, умножив длину ВВ1 на 10 см (длина смежной стороны):

S = 3*10 = 30 см кв.

Ответ: Площадь параллелограмма равна 30 см кв.

Обозначим имеющийся параллелограмм как ABCD. Точкой пересечения его диагоналей является точка О. Образованные диагоналями треугольные фигуры ABO, BCO, CDO, DAO являются одинаковыми по площади. Об этом свидетельствует тот факт, что диагонали параллелограмма делятся ровно пополам в точке их пересечения. Свидетельством того, что все четыре треугольника имеют одинаковые площади, выступает равенство синусов смежных углов. Площадь является ½ числа, которое получено в результате умножения длин сторон треугольника и синуса угла, образованного между ними. Параметры, которые отвечают вычислению площадей треугольников, равны, а это означает равенство и самих площадей.

Если площади всех четырех треугольных фигур равны, то площадь самого параллелограмма будет в четыре раза превышать площадь любого из них. Это значит, что площадь (S) параллелограмма может быть вычислена следующим образом:

Читайте также:  Прямоугольный параллелепипед формулы с примерами

Ответ: Площадь параллелограмма равна 28 м кв.

Площадь (S) параллелограмма рассчитывается путем умножения длины его основания на длину его высоты.

Прямые МС и МD, проведенные из точки М, делят параллелограмм на треугольники. Площадь первого из них вычисляется как:

S₁ = 1/2 * a * h = 38 см кв.

Формула для расчета площади второго треугольника выглядит так:

Площадь третьего треугольника можно найти следующим образом:

Теперь через площади образованных треугольников можно вычислить площадь параллелограмма:

S = S₁ + S₂ + S₃ = 1/2 *(a * h +a₁ * h +a₂ * h) = 1/2 * (a * h + h(a₁ + a₂)) = 1/2 * (a * h + a * h) = 2 * 38 = 76 см. кв.

Ответ: Площадь параллелограмма равна 76 см кв.

Формула расчета площади параллелограмма (S) включает длину его высоты и длину его основания. Данные элементы нужно перемножить, для того чтобы вычислить площадь фигуры:

S = a*h= 5*6=30 см кв.

Ответ: Параллелограмм имеет площадь 30 см кв.

На продолжение стороны CD опустим перпендикуляр ЕН из точки Е. Он представляет собой высоту для параллелограмма ABCD и треугольника CDE.

Известно, что площадь (S) параллелограмма является произведением длины его стороны и высоты, которая на нее опущена. Площадь треугольника представляет собой ½ от числа, которое получилось в результате умножения длины стороны на высоту, опущенную на нее. На основании этого можно сделать вывод о том, что:

S(∆CDE) = ½*EH*CD => 2*S(∆CDE) = EH*CD.

Из этого следует, что:

2*S(∆CDE) = S(ABCD) = 2*36 ед² = 72 ед. кв.

Ответ: Площадь параллелограмма составляет 72 кв. ед.

Для получения возможности рассчитать, чему равна площадь (S) параллелограмма, нужно располагать сведениями о длине его основания (а) и высоты (h). В этом случае площадь можно высчитать при помощи следующей формулы:

Формула, которая предназначена для вычисления площади параллелограмма (S) через синус, выглядит следующим образом:

В данной формуле буквами a и b обозначены стороны параллелограмма, являющиеся смежными, а А означает угол, который образован между этими сторонами.

Доказано, что синусы смежных углов являются равными. Это значит, что синус тупого угла равен синусу острого угла.

Площадь параллелограмма вычисляем следующим образом:

S = 8 × 10 × 0,05 = 4 см кв.

Ответ: Параллелограмм имеет площадь, равную 4 см кв.

Высота, опущенная на сторону АВ параллелограмма, обозначена как СК. Полученный в результате треугольник КВС имеет прямой угол.

В этом случае ВС=AD=24 см. Так, синус угла В равен:

sinВ=12/24=1/2, что соответствует углу 30 градусов.

Площадь любой из четырехугольных фигур может быть вычислена, если известны длины ее диагоналей и синус угла, образованного между ними. Для этого нужно произвести умножение упомянутых величин, а затем разделить полученное число на 2. В случае с параллелограммом, обозначенным как ABCD, площадь рассчитывается по этой же формуле:

S = 1/2 AC*BD*sin∠AOB = ½*28*5*sin30° = 14*5*1/2 = 7*5 = 35 кв. см.

Ответ: Площадь параллелограмма равна 35 см кв.

Площадь параллелограмма (S) представляет собой половину числа, полученного после умножения друг на друга длин проведенных в нем диагоналей, которое умножено на синус образовавшегося в итоге их пересечения угла:

Для определения площади параллелограмма через известные длины проведенных в нем диагоналей применяется приведенная ниже формула:

где диагонали фигуры обозначены как d 1 и d 2, а синус образованного в результате их пересечения угла — sin α.

Подставим в указанное равенство величины, приведенные в задании:

S = 1/2 * 4 см * 6 см * sin 90° = 12 см кв.

Ответ: Площадь параллелограмма, вычисленная через диагонали, равна 12 см кв.

Под площадью параллелограмма (S) понимается величина, полученная в результате умножения длины его стороны (b) на высоту (h), которая опущена к ней. В виде формулы это выглядит следующим образом:

Площадь треугольной фигуры представляет собой ½ числа, полученного произведением длины стороны на высоту, которая к ней проведена:

Отсюда получаем, что:

b*h=2Sт=2*21=42 см кв.

Если говорить о треугольнике МАD, то в нем сторона АD представлена в качестве стороны b, как и в случае с параллелограммом. Высота указанного треугольника будет также представлять собой высоту параллелограмма. Это обусловлено тем, что точка М расположена на стороне, которая противоположна стороне ВС. Из этого следует, что площадь параллелограмма равна 42 см кв.

Ответ: Площадь параллелограмма равна 42 см кв.

В параллелограмме ABCD нужно провести высоту ВН на сторону AD. После этого получается треугольник АВН с углом в 90 градусов. Можно рассчитать, чему равен еще один угол данного треугольника:

ВН = АВ*sin60 = 10*корень3/2 = 5*корень3

Таким образом, можно узнать, чему будет равна площадь параллелограмма:

S = AD*ВН = 14*5*√3 = 70*√3 см кв.

Ответ: Площадь параллелограмма составляет 70*√3 см кв.

АС представляет собой диагональ биссектрисы. В этом случае оба треугольника FMD и ADC являются подобными по той причине, что они имеют общий угол А и их стороны равны. Из этого следует, что:

S ADC = 1/2*ab*sina

S FDM=1/2 *2a*2bsina

Отношение площадей двух треугольников выглядит как:

S ADC / S FDM= 32/x

Теперь можно высчитать площадь параллелограмма:

Источник

Поделиться с друзьями
Объясняем