Единичная окружность вращательное движение

Вращательное движение

Законы, определяющие движение тела по окружности, аналогичны законам поступательного движения. Уравнения, описывающие вращательное движение, можно вывести из уравнений поступательного движения, произведя в последних следующие замены:

Если:
перемещение s — угловое перемещение (угол поворота) ?,
скорость u — угловая скорость ?,
ускорение a — угловое ускорение ?

Угол поворота

Во всех уравнения вращательного движения углы задаются в радианах, сокращенно (рад).

Если
? — угловое перемещение в радианах,
s — длина дуги, заключенной
между сторонами угла поворота,
r — радиус,
то по определению радиана

Соотношение между единицами угла

Обратите внимание: Наименование единицы радиан (рад) обычно указывается в формулах только в тех случаях, когда ее можно спутать с градусом. Поскольку радиан равен отношению длин двух отрезков
(1рад = 1м/ 1м = 1), он не имеет размерности.

Соотношение между угловой скоростью, угловым перемещением и временем для всех видов движения по окружности наглядно видны на графике угловой скорости (зависимость ? от t). Поэтому графику можно определить, какой угловой скоростью обладает тело в тот или иной момент времени и на какой угол с момента начала движения оно повернулось (он характеризуется площадью под кривой).

Кроме того, для представления соотношений между названными величинами используют график углового перемещения (зависимость ? от t) и график углового ускорения (зависимость ? от t).

Число оборотов

Характеристикой всех видов вращения является число оборотов n или равноценная ей характеристика — частота f. Обе величины характеризуют число оборотов в единицу времени.

Единица СИ частоты (или числа оборотов)

Читайте также:  Прямоугольный бак 250 литров

В технике число оборотов обычно измеряется в оборотах в минуту (об/мин) = 1/мин.

Таким образом, величина, обратная числу оборотов, есть продолжительность одного оборота.

Если
n — число оборотов,
f — частота,
T — продолжительность одного оборота, период,
? — угловое перемещение,
N — полное число оборотов,
t — время, продолжительность вращения,
? — угловая частота,
то

Период

Угловое перемещение

Угловое перемещение равно произведению полного числа оборотов на 2?:

Угловая скорость

Из формулы для одного оборота следует:

Обратите внимание:
формулы справедливы для всех видов вращательного движения — как для равномерного движения, так и для ускоренного. В них могут входить постоянные величины, средние значения, начальные и конечные значения, а также любые мгновенные значения.
вопреки своему названию число оборотов n — это не число, а физическая величина.
следует различать число оборотов n и полное число оборотов N.

Равномерное движение тела по окружности

Говорят, что тело движется по окружности равномерно, если его угловая скорость постоянна, т.е. тело за равные промежутки времени поворачивается на один и тот же угол.

? — угловая скорость (постоянная в течение времени t)
? — угловое перемещение
t — время поворота на угол ?

Поскольку на графике угловой скорости площадь прямоугольника соответствует угловому перемещению, имеем:

Постоянная угловая скорость — есть отношение углового перемещения (угла поворота) ко времени, затраченному на это перемещение.

Единица СИ угловой скорости:

Равномерно ускоренное движение по окружности без начальной угловой скорости

Тело начинает двигаться из состояния покоя, и его угловая скорость равномерно возрастает.

? — мгновенная угловая скорость тела в момент времени t
? — угловое ускорение, постоянное в течение времени t
? — угловое перемещение тела за время t, (? в радианах)
t — время

Поскольку на графике скорости угловое перемещение равно площади треугольника, имеем:

Поскольку вращение тела начинается из состояния покоя, изменение угловой скорости ?? равно достигнутой в результате ускорения угловой скорости ?. Поэтому формула принимает следующий вид:

Читайте также:  Как правильно отрегулировать дворники на ваз 2110 после замены трапеции

Равномерно ускоренное движение по окружности с начальной угловой скоростью

Начальная скорость тела, равная ?0 в момент t = 0, изменяется равномерно на величину ??. (Угловое ускорение при этом постоянно.)

?0 — начальная угловая скорость
? — конечная угловая скорость
? — угловое перемещение тела за время t в радианах
t — время
? — угловое ускорение постоянное в течение времени t

Поскольку на графике скорости угловое перемещение соответствует площади трапеции под кривой скорости, имеем:

Так как площадь трапеции равна сумме площадей образующих ее треугольника и прямоугольника, получаем:

Далее из графика скорости следует

Совместив формулы мы получим

После преобразования получаем выражение, не содержащее времени:

Неравномерно ускоренное движение тела по окружности

Движение тела по окружности будет неравномерно ускоренным, если изменение угловой скорости происходит не пропорционально времени, т. е. если угловое ускорение не остается постоянным. В этом случае и угловая скорость и угловое ускорение являются функциями времени.

Связь величин ?, ? и ? представлена на соответствующих графиках.

Мгновенная угловая скорость

Полный угол поворота тела в любой момент времени можно определить по графику углового перемещения. Чем круче график, тем больше в данный момент времени мгновенная угловая скорость.

? — угол между касательной и осью времени t
? — мгновенная угловая скорость
? — угловое перемещение к моменту времени t

Мгновенной угловой скоростью называется первая производная функции ? = ?(t) по времени.

Обратите внимание:
1) чтобы вычислить мгновенную угловую скорость ?, необходимо знать зависимость углового перемещения от времени.
2) формула углового перемещения при равномерном движении тела по окружности и формула углового перемещения при равномерно ускоренном движении по окружности без начальной угловой скорости являются частными случаями формулы (2) соответственно для ? = 0 и ? = const.

Из формул следует:

Проинтегрировав обе части выражения, получим

Угловое перемещение есть интеграл по времени от угловой скорости.

Обратите внимание:
Для вычисления углового перемещения ? необходимо знать зависимость угловой скорости от времени.

Читайте также:  Замена ремкомплекта трапеции дворников приора с кондиционером

Средняя угловая скорость

Средняя угловая скорость для некоторого интервала времени

Среднее число оборотов определяется аналогично формуле:

Вращательное движение тела, формулы

При вращательном движении твердого тела все элементы его массы, не лежащие на оси вращения, совершают движение по окружности. Аналогично и материальная точка, находящаяся на расстоянии r > 0 от оси вращения, также совершает движение по окружности, как и любое тело, достаточно удаленное от оси вращения.

Линейное перемещение Sл, линейная скорость uл и линейное ускорение aл при таком движении связаны между собой обычными для поступательного движения соотношениями.

Кроме того, эти величины связаны определенным образом с угловым перемещением ?, угловой скоростью ? и угловым ускорением ?.

перемещение тела по траектории, метр
скорость тела при движении по траектории, метр / секунда
ускорение данного тела при движении по траектории, метр / секунда2
r радиус траектории, метр
d диаметр траектории, метр
? угловое перемещение тела, радиан
? угловая скорость тела, радиан / секунда
? угловое ускорение тела, радиан / секунда2
f частота, Герц

Примечание:Формулы справедливы для постоянных, мгновенных и средних величин, во всех случаях движения тела по окружности.

Векторные величины, характеризующие вращательное движение тела

Угловая скорость и угловое ускорение тела являются векторными величинами. Эти векторы направлены вдоль оси вращения (аксиальные векторы), а их длина определяет величину соответствующих характеристик вращательного движения. Направление векторов определяется по правилу буравчика, т. е. совпадает с направлением поступательного движения буравчика, рукоятка которого движется в том же направлении, что и тело.

Определение:Если тело участвует одновременно в нескольких вращательных движениях, то результирующая угловая скорость определяется по правилу векторного (геометрического) сложения:

Величина результирующей угловой скорости определяется по аналогии с формулой (Сложение движений):

или, если оси вращения перпендикулярны друг другу

Примечание: Результирующее угловое ускорение определяется аналогичным образом. Графически результирующую можно найти как диагональ параллелограмма скоростей или ускорений.

Источник

Поделиться с друзьями
Объясняем