Единичная окружность отрицательные значения

Единичная окружность отрицательные значения

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

В предыдущем уроке мы освоили базовые понятия. Это понятия тригонометрическая окружность, угол, синус и косинус этого угла. Освоили, что называется, «на пальцах». Главное сделано. Но чтобы толково использовать эти понятия на практике, надо чётко усвоить два момента.

1. Как считаются углы?
2. В чём они считаются?

Первый вопрос прост, но и здесь есть место ошибкам. А второй. Если опросить 10 человек на тему: «Что такое «Пи» в тригонометрических функциях?», лучший ответ будет такой:»Пи — это 180 градусов!» Что, по сути, верно, но уточнять детали лучше уже не надо. Чтобы не испортить впечатление.)

Формальное, неосознанное использование понятий очень часто приводит. в лужу. При нестандартных вопросах — почти всегда. Но мы в лужу не собираемся, правда? Сыро там. Работаем.

Положительные и отрицательные углы в тригонометрии.

В этом небольшом уроке разберём первый вопрос.

Итак, как считать углы на тригонометрическом круге?
Смотрим на рисунок.

Он почти такой, как в предыдущем уроке. Есть оси, окружность, угол, всё чин-чинарём. Добавлены номера четвертей (в уголках большого квадрата) — от первой, до четвёртой. А то вдруг кто не знает? Как видите, четверти (их ещё называют красивым словом «квадранты») нумеруются против хода часовой стрелки. Добавлены значения угла на осях. Всё понятно, никаких заморочек.

И добавлена зелёная стрелка. С плюсом. Что она означает? Напомню, что неподвижная сторона угла всегда прибита к положительной полуоси ОХ. Так вот, если подвижную сторону угла мы будем крутить по стрелке с плюсом, т.е. по возрастанию номеров четвертей, угол будет считаться положительным. Для примера на картинке показан положительный угол +60°.

Если будем откладывать углы в обратную сторону, по ходу часовой стрелки, угол будет считаться отрицательным. Наведите курсор на картинку (или коснитесь картинки на планшете), увидите синюю стрелку с минусом. Это — направление отрицательного отсчёта углов. Для примера показан отрицательный угол (- 60°). А ещё вы увидите, как поменялись циферки на осях. Я их тоже перевёл в отрицательные углы. Нумерация квадрантов не меняется.

Вот тут, обычно, начинаются первые непонятки. Как так!? А если отрицательный угол на круге совпадёт с положительным!? Да и вообще, получается что, одно и то же положение подвижной стороны (или точки на числовой окружности) можно обозвать как отрицательным углом, так и положительным!?

Да. Именно так. Скажем, положительный угол 90 градусов занимает на круге точно такое же положение, что и отрицательный угол в минус 270 градусов. Положительный угол, к примеру, +110° градусов занимает точно такое же положение, что и отрицательный угол -250°.

Читайте также:  Прямоугольный треугольник тригонометрические соотношения

Зачем?! Как теперь считать углы, если можно и так и этак!? Как правильно!?

Не вопрос. Всяко правильно.) Выбор положительного или отрицательного исчисления угла зависит от условия задания. Если в условии ничего не сказано открытым текстом про знак угла, (типа «определить наименьший положительный угол» и т.д.), то работаем с удобными нам величинами.

Исключением (а как без них?!) являются тригонометрические неравенства, но там мы эту фишку освоим.

А теперь вопрос вам. Как я узнал, что положение угла 110° совпадает с положением угла -250°?
Намекну, что это связано с полным оборотом. В 360°. Непонятно? Тогда рисуем круг. Сами рисуем, на бумаге. Отмечаем угол примерно 110°. И считаем, сколько остается до полного оборота. Останется как раз 250°.

Уловили? А теперь — внимание! Если углы 110° и -250° занимают на круге одно и то же положение, то что? Да то, что у углов 110° и -250° совершенно одинаковые синус, косинус, тангенс и котангенс!
Т.е. sin110° = sin(-250°), ctg110° = ctg(-250°) и так далее. Вот это уже действительно важно! И само по себе — есть масса заданий, где надо упростить выражения, и как база для последующего освоения формул приведения и прочих премудростей тригонометрии.

Понятное дело, 110° и -250° я взял наобум, чисто для примера. Всё эти равенства работают для любых углов, занимающих одно положение на круге. 60° и -300°, -75° и 285°, ну и так далее. Отмечу сразу, что углы в этих парочках — разные. А вот тригонометрические функции у них — одинаковые.

Думаю, что такое отрицательные углы вы поняли. Это совсем просто. Против хода часовой стрелки — положительный отсчёт. По ходу — отрицательный. Считать угол положительным, или отрицательным зависит от нас. От нашего желания. Ну, и ещё от задания, конечно. Надеюсь, вы поняли и как переходить в тригонометрических функциях от отрицательных углов к положительным и обратно. Нарисовать круг, примерный угол, да посмотреть, сколько недостаёт до полного оборота, т.е. до 360°.

Углы больше 360°.

Займемся углами которые больше 360°. А такие бывают? Бывают, конечно. Как их нарисовать на круге? Да не проблема! Допустим, нам надо понять, в какую четверть попадёт угол в 1000°? Легко! Делаем один полный оборот против хода часовой стрелки (угол-то нам дали положительный!). Отмотали 360°. Ну и мотаем дальше! Ещё оборот — уже получилось 720°. Сколько осталось? 280°. На полный оборот не хватает. Но угол больше 270° — а это граница между третьей и четвёртой четвертью. Стало быть наш угол в 1000° попадает в четвёртую четверть. Всё.

Как видите, это совсем просто. Ещё раз напомню, что угол 1000° и угол 280°, который мы получили путём отбрасывания «лишних» полных оборотов — это, строго говоря, разные углы. Но тригонометрические функции у этих углов совершенно одинаковые! Т.е. sin1000° = sin280°, cos1000° = cos280° и т.д. Если бы я был синусом, я бы не заметил разницы между этими двумя углами.

Читайте также:  Интерьеры прямоугольных кухонь гостиных

Зачем всё это нужно? Зачем нам переводить углы из одного в другой? Да всё за тем же.) С целью упрощения выражений. Упрощение выражений, собственно, главная задача школьной математики. Ну и, попутно, голова тренируется.)

Ну что, потренируемся?)

Отвечаем на вопросы. Сначала простые.

1. В какую четверть попадает угол -325° ?

2. В какую четверть попадает угол 3000° ?

3. В какую четверть попадает угол -3000° ?

Есть проблемы? Или неуверенность? Идём в Раздел 555, Практическая работа с тригонометрическим кругом. Там, в первом уроке этой самой «Практической работы. » всё подробненько. В таких вопросах неуверенности быть не должно!

Всё нормально? Едем дальше:

4. Какой знак имеет sin555° ?

5. Какой знак имеет tg555° ?

Определили? Отлично! Сомневаетесь? Надо в Раздел 555. Кстати, там научитесь рисовать тангенс и котангенс на тригонометрическом круге. Очень полезная штучка.

А теперь вопросы помудрёнее.

6. Привести выражение sin777° к синусу наименьшего положительного угла.

7. Привести выражение cos777° к косинусу наибольшего отрицательного угла.

8. Привести выражение cos(-777°) к косинусу наименьшего положительного угла.

9. Привести выражение sin777° к синусу наибольшего отрицательного угла.

Что, вопросы 6-9 озадачили? Привыкайте, на ЕГЭ и не такие формулировочки встречаются. Так и быть, переведу. Только для вас!

Слова «привести выражение к. » означают преобразовать выражение так, чтобы его значение не изменилось, а внешний вид поменялся в соответствии с заданием. Так, в задании 6 и 9 мы должны получить синус, внутри которого стоит наменьший положительный угол. Всё остальное — не имеет значения.

Ответы выдам по порядку (в нарушение наших правил). А что делать, знака всего два, а четверти всего четыре. Не разбежишься в вариантах.

Предполагаю, что ответы на вопросы 6 -9 кое-кого смутили. Особенно -sin(-57°), правда?) Действительно, в элементарных правилах отсчёта углов есть место для ошибок. Именно поэтому пришлось сделать урок: «Как определять знаки функций и приводить углы на тригонометрическом круге?» В Разделе 555. Там задания 4 — 9 разобраны. Хорошо разобраны, со всеми подводными камнями. А они тут есть.)

В следующем уроке мы разберёмся с загадочными радианами и числом «Пи». Научимся легко и правильно переводить градусы в радианы и обратно. И с удивлением обнаружим, что этой элементарной информации на сайте уже хватает, чтобы решать некоторые нестандартные задачки по тригонометрии!

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Вот здесь можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

А вот здесь можно познакомиться с функциями и производными.

Источник

Тригонометрический круг. Основные значения тригонометрических функций

Если вы уже знакомы с тригонометрическим кругом , и хотите лишь освежить в памяти отдельные элементы, или вы совсем нетерпеливы, – то вот он, тригонометрический круг :

Читайте также:  Около окружности можно описать только многоугольник

Мы же здесь будем все подробно разбирать шаг за шагом + показать

Тригонометрический круг – не роскошь, а необходимость

Тригонометрия у многих ассоциируется с непроходимой чащей. Вдруг наваливается столько значений тригонометрических функций, столько формул… А оно ведь, как, – незаладилось вначале, и… пошло-поехало… сплошное непонимание…

Очень важно не махать рукой на значения тригонометрических функций, – мол, всегда можно посмотреть в шпору с таблицей значений.

Если вы постоянно смотрите в таблицу со значениями тригонометрических формул, давайте избавляться от этой привычки!

Нас выручит тригонометрический круг ! Вы несколько раз поработаете с ним, и далее он у вас сам будет всплывать в голове. Чем он лучше таблицы? Да в таблице-то вы найдете ограниченное число значений, а на круге – ВСЕ!

К примеру, скажите, глядя в стандартную таблицу значений тригонометрических формул , чему равен синус, скажем, градусов, или .

Никак. можно, конечно, подключить формулы приведения… А глядя на тригонометрический круг, легко можно ответить на такие вопросы. И вы скоро будете знать как!

А при решении тригонометрических уравнений и неравенств без тригонометрического круга – вообще никуда.

Знакомство с тригонометрическим кругом

Давайте по порядку.

Сначала выпишем вот такой ряд чисел:

И, наконец, такой:

Конечно, понятно, что, на самом-то деле, на первом месте стоит , на втором месте стоит , а на последнем – . То есть нас будет больше интересовать цепочка .

Но как красиво она получилась! В случае чего – восстановим эту «лесенку-чудесенку».

И зачем оно нам?

Эта цепочка – и есть основные значения синуса и косинуса в первой четверти.

Начертим в прямоугольной системе координат круг единичного радиуса (то есть радиус-то по длине берем любой, а его длину объявляем единичной).

От луча «0-Старт» откладываем в направлении стрелки (см. рис.) углы .

Получаем соответствующие точки на круге. Так вот если спроецировать точки на каждую из осей, то мы выйдем как раз на значения из указанной выше цепочки.

Это почему же, спросите вы?

Не будем разбирать все. Рассмотрим принцип, который позволит справиться и с другими, аналогичными ситуациями.

Треугольник АОВ – прямоугольный, в нем . А мы знаем, что против угла в лежит катет вдвое меньший гипотенузы (гипотенуза у нас = радиусу круга, то есть ).

Значит, АВ= (а следовательно, и ОМ=). А по теореме Пифагора

Надеюсь, уже что-то становится понятно?

Так вот точка В и будет соответствовать значению , а точка М – значению

Аналогично с остальными значениями первой четверти.

Как вы понимаете, привычная нам ось (ox) будет осью косинусов , а ось (oy) – осью синусов . Про тангенс и котангенс позже.

Слева от нуля по оси косинусов (ниже нуля по оси синусов) будут, конечно, отрицательные значения.

Итак, вот он, ВСЕМОГУЩИЙ тригонометрический круг , без которого никуда в тригонометрии.

А вот как пользоваться тригонометрическим кругом, мы поговорим в следующей статье.

Источник

Поделиться с друзьями
Строю.ру
Adblock
detector