Единичная окружность на координатной плоскости это

Единичная окружность на координатной плоскости это

Числовая окружность – это единичная окружность, точки которой соответствуют определенным действительным числам.

Единичной окружностью называют окружность радиуса 1.

Общий вид числовой окружности.

1) Ее радиус принимается за единицу измерения.

2) Горизонтальный и вертикальный диаметры делят числовую окружность на четыре четверти (см.рисунок). Их соответственно называют первой, второй, третьей и четвертой четвертью.

3) Горизонтальный диаметр обозначают AC, причем А – это крайняя правая точка.
Вертикальный диаметр обозначают BD, причем B – это крайняя верхняя точка.
Соответственно:

первая четверть – это дуга AB

вторая четверть – дуга BC

третья четверть – дуга CD

четвертая четверть – дуга DA

4) Начальная точка числовой окружности – точка А.

Отсчет по числовой окружности может вестись как по часовой стрелке, так и против часовой стрелки.
Отсчет от точки А против часовой стрелки называется положительным направлением.
Отсчет от точки А по часовой стрелке называется отрицательным направлением.

Числовая окружность на координатной плоскости.

Центр радиуса числовой окружности соответствует началу координат (числу 0).

Горизонтальный диаметр соответствует оси x, вертикальный – оси y.

Начальная точка А числовой окружности находится на оси x и имеет координаты (1; 0).

Значения x и y в четвертях числовой окружности:

x 0, y Основные величины числовой окружности:


Величина
в радианах


Величина
в радиусах

Имена и местонахождение основных точек числовой окружности:


Как запомнить имена числовой окружности.

Есть несколько простых закономерностей, которые помогут вам легко запомнить основные имена числовой окружности.

Перед тем как начать, напомним: отсчет ведется в положительном направлении, то есть от точки А (2π) против часовой стрелки.

1) Начнем с крайних точек на осях координат.

Начальная точка – это 2π (крайняя правая точка на оси х, равная 1).

Как вы знаете, 2π – это длина окружности. Значит, половина окружности – это 1π или π. Ось х делит окружность как раз пополам. Соответственно, крайняя левая точка на оси х, равная -1, называется π.

Крайняя верхняя точка на оси у, равная 1, делит верхнюю полуокружность пополам. Значит, если полуокружность – это π, то половина полуокружности – это π/2.

Одновременно π/2 – это и четверть окружности. Отсчитаем три таких четверти от первой до третьей – и мы придем в крайнюю нижнюю точку на оси у, равной -1. Но если она включает три четверти – значит имя ей 3π/2.

2) Теперь перейдем к остальным точкам. Обратите внимание: все противоположные точки имеют одинаковый числитель – причем это противоположные точки и относительно оси у, и относительно центра осей, и относительно оси х. Это нам и поможет знать их значения точек без зубрежки.

Надо запомнить лишь значение точек первой четверти: π/6, π/4 и π/3. И тогда мы «увидим» некоторые закономерности:

— Относительно оси у в точках второй четверти, противоположных точкам первой четверти, числа в числителях на 1 меньше величины знаменателей. К примеру, возьмем точку π/6. Противоположная ей точка относительно оси у тоже в знаменателе имеет 6, а в числителе 5 (на 1 меньше). То есть имя этой точки: 5π/6. Точка, противоположная π/4, тоже имеет в знаменателе 4, а в числителе 3 (на 1 меньше, чем 4) – то есть это точка 3π/4.
Точка, противоположная π/3, тоже имеет в знаменателе 3, а в числителе на 1 меньше: 2π/3.

Читайте также:  Задачи на отрезки связанные с окружностью

— Относительно центра осей координат все наоборот: числа в числителях противоположных точек (в третьей четверти) на 1 больше значения знаменателей. Возьмем опять точку π/6. Противоположная ей относительно центра точка тоже имеет в знаменателе 6, а в числителе число на 1 больше – то есть это 7π/6.

Точка, противоположная точке π/4, тоже имеет в знаменателе 4, а в числителе число на 1 больше: 5π/4.
Точка, противоположная точке π/3, тоже имеет в знаменателе 3, а в числителе число на 1 больше: 4π/3.

— Относительно оси х (четвертая четверть) дело посложнее. Здесь надо к величине знаменателя прибавить число, которое на 1 меньше – эта сумма и будет равна числовой части числителя противоположной точки. Начнем опять с π/6. Прибавим к величине знаменателя, равной 6, число, которое на 1 меньше этого числа – то есть 5. Получаем: 6 + 5 = 11. Значит, противоположная ей относительно оси х точка будет иметь в знаменателе 6, а в числителе 11 – то есть 11π/6.

Точка π/4. Прибавляем к величине знаменателя число на 1 меньше: 4 + 3 = 7. Значит, противоположная ей относительно оси х точка имеет в знаменателе 4, а в числителе 7 – то есть 7π/4.
Точка π/3. Знаменатель равен 3. Прибавляем к 3 на единицу меньшее число – то есть 2. Получаем 5. Значит, противоположная ей точка имеет в числителе 5 – и это точка 5π/3.

3) Еще одна закономерность для точек середин четвертей. Понятно, что их знаменатель равен 4. Обратим внимание на числители. Числитель середины первой четверти – это 1π (но 1 не принято писать). Числитель середины второй четверти – это 3π. Числитель середины третьей четверти – это 5π. Числитель середины четвертой четверти – это 7π. Получается, что в числителях середин четвертей – четыре первых нечетных числа в порядке их возрастания:
(1)π, 3π, 5π, 7π.
Это тоже очень просто. Поскольку середины всех четвертей имеют в знаменателе 4, то мы уже знаем их полные имена: π/4, 3π/4, 5π/4, 7π/4.

Особенности числовой окружности. Сравнение с числовой прямой.

Как вы знаете, на числовой прямой каждая точка соответствует единственному числу. К примеру, если точка А на прямой равна 3, то она уже не может равняться никакому другому числу.

На числовой окружности все иначе, поскольку это окружность. К примеру, чтобы из точки А окружности прийти к точке M, можно сделать это, как на прямой (только пройдя дугу), а можно и обогнуть целый круг, а потом уже прийти к точке M. Вывод:

Пусть точка M равна какому-то числу t. Как мы знаем, длина окружности равна 2π. Значит, точку окружности t мы можем записать двояко: t или t + 2π. Это равнозначные величины.
То есть t = t + 2π. Разница лишь в том, что в первом случае вы пришли к точке M сразу, не делая круга, а во втором случае вы совершили круг, но в итоге оказались в той же точке M. Таких кругов можно сделать и два, и три, и двести. Если обозначить количество кругов буквой k, то получим новое выражение:
t = t + 2πk.

Отсюда формула:

Если точка M числовой окружности равна числу t, то она равна и числу вида t + 2πk, где k – любое целое число:

Читайте также:  Дракон рисует три окружности

M(t) = M(t + 2πk),

где k Z.

Число k называется параметром.

Уравнение числовой окружности
(второе уравнение – в разделе «Синус, косинус, тангенс, котангенс»):

Источник

Единичная числовая окружность на координатной плоскости

п.1. Понятие тригонометрии

Тригонометрия берёт своё начало в Древней Греции. Само слово «тригонометрия» по-гречески означает «измерение треугольников». Эта наука в течение тысячелетий используется землемерами, архитекторами и астрономами.
Начиная с Нового времени, тригонометрия заняла прочное место в физике, в частности, при описании периодических процессов. Например, переменный ток в розетке генерируется в периодическом процессе. Поэтому любой электрический или электронный прибор у вас в доме: компьютер, смартфон, микроволновка и т.п., — спроектирован с использованием тригонометрии.

Базовым объектом изучения в тригонометрии является угол.

Предметом изучения тригонометрии как раздела математики выступают:
1) взаимосвязи между углами и сторонами треугольника, которые называют тригонометрическими функциями;
2) использование тригонометрических функций в геометрии.

п.2. Числовая окружность

Мы уже знакомы с числовой прямой (см. §16 справочника для 8 класса) и координатной плоскостью (см. §35 справочника для 7 класса), с помощью которых создаются графические представления числовых промежутков и функций. Это удобный инструмент моделирования, с помощью которого можно провести анализ, начертить график, найти область допустимых значений и решить задачу.
Для работы с углами и их функциями существует аналогичный инструмент – числовая окружность.

Числовая окружность (тригонометрический круг) – это окружность единичного радиуса R=1 с центром в начале координат (0;0).
Точка с координатами (1;0) является началом отсчета , ей соответствует угол, равный 0.
Углы на числовой окружности отсчитываются против часовой стрелки. Направление движения против часовой стрелки является положительным ; по часовой стрелке – отрицательным .
Отметим на числовой окружности углы 30°, 45°, 90°, 120°, 180°, а также –30°, –45°, –90&deg, –120°, –180°.

п.3. Градусная и радианная мера угла

Углы можно измерять в градусах или в радианах.
Известно, что развернутый угол, дуга которого равна половине окружности, равен 180°. Прямой угол, дуга которого равна четверти окружности, равен 90°. Тогда полная, замкнутая дуга окружности составляет 360°.
Приписывание развернутому углу меры в 180°, а прямому 90°, достаточно произвольно и уходит корнями в далёкое прошлое. С таким же успехом это могло быть 100° и 50°, или 200° и 100° (что, кстати, предлагалось одним из декретов во времена французской революции 1789 г.).

В целом, более обоснованной и естественной для измерения углов является радианная мера.

Найдем радианную меру прямого угла ∠AOB=90°.
Построим окружность произвольного радиуса r с центром в вершине угла – точке O. Длина этой окружности: L=2πr.
Длина дуги AB: \(l_=\frac<4>=\frac<2\pi r><4>=\frac<\pi r><2>.\)
Тогда радианная мера угла: $$ \angle AOB=\frac>=\frac<\pi r><2\cdot r>=\frac<\pi> <2>$$
30° 45° 60° 90° 120° 135° 150° 180° 270° 360°
\(\frac<\pi><6>\) \(\frac<\pi><4>\) \(\frac<\pi><3>\) \(\frac<\pi><2>\) \(\frac<2\pi><3>\) \(\frac<3\pi><4>\) \(\frac<5\pi><6>\) \(\pi\) \(\frac<3\pi><2>\) \(2\pi\)

п.4. Свойства точки на числовой окружности

Построим числовую окружность. Обозначим O(0;0), A(1;0)

Каждому действительному числу t на числовой окружности соответствует точка Μ(t).
При t=0, M(0)=A.
При t>0 двигаемся по окружности против часовой стрелки, описывая дугу
AM=t. Точка M — искомая.
При t Например:
Отметим на числовой окружности точки, соответствующие \(\frac<\pi><6>,\ \frac<\pi><4>,\ \frac<\pi><2>,\ \frac<2\pi><3>,\ \pi\), а также \(-\frac<\pi><6>,\ -\frac<\pi><4>,\ -\frac<\pi><2>,\ -\frac<2\pi><3>,\ -\pi\)
Для этого нужно отложить углы 30°, 45°, 90°, 120°, 180° и –30°, –45°, –90°, –120°, –180° с вершиной в начале координат и отметить соответствующие дуги на числовой окружности.
Отметим на числовой окружности точки, соответствующие \(\frac<\pi><6>,\ \frac<13\pi><6>,\ \frac<25\pi><6>\), и \(-\frac<11\pi><6>\).
Все четыре точки совпадают, т.к. \begin M\left(\frac<\pi><6>\right)=M\left(\frac<\pi><6>+2\pi k\right)\\ \frac<\pi><6>-2\pi=-\frac<11\pi><6>\\ \frac<\pi><6>+2\pi=\frac<13\pi><6>\\ \frac<\pi><6>+4\pi=\frac<25\pi> <6>\end

п.5. Интервалы и отрезки на числовой окружности

Каждому действительному числу соответствует точка на числовой окружности. Соответственно, числовые промежутки (см. §16 справочника для 8 класса) получают свои отображения в виде дуг.

Числовой промежуток Соответствующая дуга числовой окружности
Отрезок
$$ -\frac<\pi> <6>\lt t \lt \frac<\pi> <3>$$
а также, с учетом периода $$ -\frac<\pi><6>+2\pi k\lt t\lt\frac<\pi><3>+2\pi k $$
Интервал
$$ -\frac<\pi> <6>\leq t \leq \frac<\pi> <3>$$
а также, с учетом периода $$ -\frac<\pi><6>+2\pi k\leq t\leq\frac<\pi><3>+2\pi k $$
Полуинтервал
$$ -\frac<\pi> <6>\leq t \lt\frac<\pi> <3>$$
а также, с учетом периода $$ -\frac<\pi><6>+2\pi k\leq t\lt\frac<\pi><3>+2\pi k $$

п.6. Примеры

Пример 1. Точка E делит числовую окружность во второй четверти в отношении 1:2.
Чему равны дуги AE, BE, EC, ED в градусах и радианах?

Угловая мера четверти 90°. При делении в отношении 1:2 получаем дуги 30° и 60° соответственно: \begin BE=30^<\circ>=\frac<\pi><6>.\\ EC=60^<\circ>=\frac<\pi><3>.\\ AE=EC+CD=90^<\circ>+30^<\circ>=120^<\circ>=\frac<2\pi><3>.\\ ED=EC+CD=60^<\circ>+90^<\circ>=150^<\circ>=\frac<5\pi><6>. \end

Пример 2. Найдите на числовой окружности точку, соответствующую данному числу: \(-\frac<\pi><2>;\ \frac<3\pi><4>;\ \frac<7\pi><6>;\ \frac<7\pi><4>\).

Находим соответствующие углы в градусах и откладываем с помощью транспортира (положительные – против часовой стрелки, отрицательные – по часовой стрелке), отмечаем соответствующие точки на числовой окружности. \begin -\frac<\pi><2>=-90^<\circ>,\ \ \frac<3\pi><4>=135^<\circ>\\ \frac<7\pi><6>=210^<\circ>,\ \ \frac<7\pi><4>=315^ <\circ>\end

Пример 3. Найдите на числовой окружности точку, соответствующую данному числу: \(-\frac<11\pi><2>;\ 5\pi;\ \frac<17\pi><6>;\ \frac<27\pi><4>\).

Выделяем из дроби целую часть, отнимаем/прибавляем один или больше полных оборотов (2πk — четное количество π), чтобы попасть в промежуток от 0 до 2π.
Далее – действуем, как в примере 2. \begin -\frac<11\pi><2>=\frac<-12+1><2>\cdot\pi=-6\pi+\frac<\pi><2>\rightarrow \frac<\pi><2>=90^<\circ>\\ 5\pi=4\pi+\pi\rightarrow \pi=180^<\circ>\\ \frac<17\pi><6>=\frac<18-1><6>\pi=3\pi-\frac<\pi><6>\rightarrow \pi-\frac<\pi><6>=\frac<5\pi><6>\\ \frac<27\pi><4>=\frac<28-1><4>\pi=7\pi-\frac<\pi><4>\rightarrow \pi-\frac<\pi><4>=\frac<3\pi> <4>\end

Пример 4. В какой четверти числовой окружности находится точка, соответствующая числу: 2; 4; 5; 7.

Сравниваем каждое число с границами четвертей: \begin 0,\ \ \frac\pi2\approx\frac<3,14><2>=1,57,\ \ \pi\approx 3,14\\ 3\pi\ \ 3\cdot 3,14\\ \frac<3\pi><2>\approx \frac<3\cdot 3,14><2>=4,71,\ \ 2\pi\approx 6,28 \end

\(\frac\pi2\lt 2\lt \pi \Rightarrow \) угол 2 радиана находится во 2-й четверти
\(\pi\lt 4\lt \frac<3\pi> <2>\Rightarrow \) угол 4 радиана находится в 3-й четверти
\(\frac<3\pi><2>\lt 5\lt 2\pi \Rightarrow \) угол 5 радиана находится в 4-й четверти
\(7\gt 2\pi\), отнимаем полный оборот: \(0\lt 7-2\pi\lt \frac\pi2\Rightarrow\) угол 7 радиан находится в 1-й четверти.

Пример 5. Изобразите на числовой окружности множество точек \((k\in\mathbb)\), запишите количество полученных базовых точек.

$$ \frac<\pi k> <2>$$ $$ -\frac<\pi><4>+2\pi k $$

Четыре базовых точки, через каждые 90°

Две базовых точки, через каждые 180°
$$ \frac<\pi><3>+\frac<2\pi k> <3>$$ $$ -\frac<\pi k> <5>$$

Три базовых точки, через каждые 120°

Пять базовых точек, через каждые 72°

Пример 6. Изобразите на числовой окружности дуги, соответствующие числовым промежуткам.

Источник

Читайте также:  Окружность мышц плеча формула
Поделиться с друзьями
Объясняем