Вычислите объем фигуры изображенной на рисунке

§23. Объём прямоугольного параллелепипеда — Ответы (ГДЗ) рабочая тетрадь (Мерзляк Полонский Якир) 5 класс часть 1

ПОВТОРЯЕМ ТЕОРИЮ

278. Заполните пропуски.

1) Равные фигуры имеют равные объемы.
2) Объем фигуры равен сумме объемов фигур, из которых она состоит.
3) За единицу измерения объема выбирают куб , ребро которого равно единичному отрезку , такой куб называют единичным .
4) Объем куба с ребром 1 мм называют кубическим миллиметром .
5) Объем куба с ребром 1 см называют кубическим сантиметром.
6) Объем куба с ребром 1 дм называют кубическим децеиметром .
7) При измерении объемов жидкостей и газов 1 дм 3 называют литром .
8) Объем куба с ребром 1 м называют кубическим метром.
9) Измерить объем фигуры — значит посчитать, сколько единичных кубов в ней помещается .
10) Объем прямоугольного параллелепипеда равен произведению трех его измерений .
11) Объем прямоугольного параллелепипеда вычисляют по формуле: V = abc , V — объем , a, b, c — его измерения .
12) Объем прямоугольного параллелепипеда равен произведению площади основания на высоту .
13) Объем прямоугольного параллелепипеда вычисляют по формуле: V= Sh , где V — его объем , S — площадь основания , h — высота .
14) Объем куба вычисляют по формуле: V= а 3 , где V — объем , а — длина его ребра .

РЕШАЕМ ЗАДАЧИ

279. Запишите единицу измерения, которую чаще всего применяют при определении:

280. Заполните таблицу.

1 дм = 10 см 1 дм 2 = 100 см 2 1 дм 3 = 1000 см 3
1 м = 10 дм 1 м 2 = 100 дм 2 1 м 3 = 1000 дм 3
1 м = 100 см 1 м 2 = 10000 см 2 1 м 3 = 1000000 см 3

281. Фигуры, изображенные на рисунке, составлены из кубиков с ребкром 1 см. Найти объем каждой фигуры.

Читайте также:  Как вычислить объем восьмиугольника

282. Если прямоугольный параллелепипед имеет измерения 2 дм, 4 дм и 5 дм, то его объем V= 2*4*5 = 40 (дм 3 ) .

283. Если ребро куба равно 3 см, то его объем V= 3 3 = 27 (см 3 ) .

284. Чтобы сложить прямоугольный параллелепипед, измерения которого равны 3 дм, 4 дм и 5 дм, нужно 60 кубиков с ебром 10 см.

285. Объем прямоугольного параллелепипеда равен 1080 см 3 , его длина — 24 см, высота — 9 см. Найдите ширину данного параллелепипеда.

Ответ: ширина параллелепипеда равна 5 см.

286. Заполните таблицу, где V — объем прямоугольного параллелепипеда, a, b, c — его измерения.

1) 700:20:5 = 7 (м)
2) 30*5*8 = 1200 (дм 3 )
3) 12*20*10 = 2400 (см 3 )
4) 216:6:6 = 6 (см)
5) 140*70*300 = 2940000 (мм 3 ) = 2940 (см 3 )
6) 320:16:4 = 5 (дм)

287. Площадь поверхности куба равна 150 см 3 . Найдите объем этого куба.

Решение:
1) 150:6 = 25 (см 2 ) — площадь грани куба
2) 25 = 5 2 , т.е. ребро куба 5 см
3) 5 3 = 125 (см 3 ) — объем куба

288. Сравните величины.

289. Заполните пропуски.

290. За сутки человек делает вдох-выдох приблизительно 22500 раз. За один вдох в легкие попадает 400 см 3 воздуха. Сколько литров воздуха проходит через легкие человека за сутки?

Решение:
22500*400 = 9000000 (см 3 ) = 9000 (л)
1 л = 1000 см 3

291. Вычислите объем фигуры, изображенной на рисунке (размеры считать в см).

Решение:
V = 20*(50*20+(50-30)*5+(50-30-15)*5) = 20*(1000+100+25) = 20*1125 = 22500 (см 3 ).

Ответ: 22500 см 3 .

292. В пустой аквариум, длина котрого равна 80 см, а ширина — 40 см, налили 18 ведер воды, а каждом из которых было 10 л воды. Определите расстояние от поверхности воды до дна аквариума.

Решение:
1) 80*40 = 3200 (см 2 ) площадь дна аквариума
2) 18*10000 = 180000 (см 3 ) объем налитой воды
3) 180000:3200 = 1800:32 = 56 ост.25 (см) от поверхности воды до дна аквариума

Читайте также:  Fb16 объем масла двигатель

293. Ребро одного куба в 5 раз больше ребра другого. Во сколько раз: 1) площадь поверхности первого куба больше площади поверхности второго; 2) объем первого куба больше объема второго?

Ответ: 1) в 25 раз; 2) в 125 раз.

294. Если ребро куба уменьшить в 6 раз, то его объем уменьшится в 216 раз .

295. Если длину прямоугольного параллелепипеда увеличить в 7 раз, ширину — в 3 раза, а высоту — в 2 раза, то его объем увеличится в 42 раза .

Источник

Вычислите объем фигуры изображенной на рисунке

Источник задания: Задачи на вычисление объемов многогранников разных видов

Задание 8_1. Найдите объем многогранника, изображенного на рисунке (все двугранные углы многогранника прямые).

Объем прямоугольного многогранника можно найти как объем параллелепипеда со сторонами 3, 3, 1 и вычесть из него объем параллелепипеда со сторонами 1, 1, 1, получим:

.

Задание 8_2. Найдите объем пространственного креста, изображенного на рисунке и составленного из единичных кубов.

Объем данной фигуры будет складываться из объемов 7-ми единичных кубов и равен, соответственно, семи.

Задание 8_3. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Объем многогранника вычислим как объем прямоугольного параллелепипеда со сторонами 5, 4, 4 минус объем параллелепипеда со сторонами 2, 3, 4, получим:

.

Задание 8_4. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Аналогично, объем многогранника равен разности объема большого параллелепипеда 4х2х1 и малого 1х1х1, получим:

.

Задание 8_5. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Из объема большого прямоугольного параллелепипеда 4х3х4 вычтем объем малого параллелепипеда 2х1х4, получим:

.

Задание 8_6. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Объем всего параллелепипеда равен . Объем вырезанной части , следовательно, объем фигуры

Читайте также:  Как изменить объем жесткого диска без переустановки

.

Задание 8_7. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Объем всего прямоугольного параллелепипеда равен . Объем вырезанной части , следовательно, объем фигуры

.

Задание 8_8. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Объем всего параллелепипеда равен . Объем вырезанной части , следовательно, объем фигуры

.

Задание 8_9. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Сначала вычислим объем прямоугольного параллелепипеда 4х3х2 . Затем вычтем из него два объема малых параллелепипедов 1х1х3, получим:

.

Задание 8_10. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Сначала вычислим объем прямоугольного параллелепипеда 4х3х3 . Затем вычтем из него два объема малых параллелепипедов 2х1х3 объемом , получим:

.

Задание 8_11. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Из объема прямоугольного параллелепипеда вычтем объем центральной части , получим

.

Задание 8_12. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Объем фигуры состоит из объемов двух прямоугольных параллелепипедов размерами 4х5х3 и 3х2х3 соответственно. Имеем:

.

Задание 8_13. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Здесь фигура составлена из двух прямоугольных параллелепипедов, объемами и . Соответственно, суммарный объем равен

.

Задание 8_14. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Фигура, изображенная на рисунке составлена из трех прямоугольных параллелепипедов объемами , , , суммарный объем равен

.

Задание 8_15. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Объем этой фигуры можно вычислить как разность между объемом всего параллелограмма и объемом вырезанного угла , получим:

.

Источник

Поделиться с друзьями
Объясняем