- Трапеция
- Содержание
- Виды трапеций
- Элементы трапеции
- Площадь трапеции
- Свойства трапеции
- Средняя линия трапеции
- Сумма углов трапеции
- Равновеликие треугольники трапеции
- Подобие образованных треугольников трапеции
- Отношение длин отрезков и оснований
- Описанная около трапеции окружность
- Вписанная в трапецию окружность
- Что такое трапеция: определение, виды, свойства
- Определение трапеции
- Виды трапеций
- Равнобедренная трапеция
- Прямоугольная трапеция
- Разносторонняя трапеция
- Свойства трапеции
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
- Свойство 6
- Свойство 7
- Свойство 8
- Трапеция. Формулы, признаки и свойства трапеции
- Основные свойства трапеции
- Сторона трапеции
- Формулы определения длин сторон трапеции:
- Средняя линия трапеции
- Формулы определения длины средней линии трапеции:
- Высота трапеции
- Формулы определения длины высоты трапеции:
- Диагонали трапеции
- Формулы определения длины диагоналей трапеции:
- Площадь трапеции
- Формулы определения площади трапеции:
- Периметр трапеции
- Формула определения периметра трапеции:
- Окружность описанная вокруг трапеции
- Формула определения радиуса описанной вокруг трапеции окружности:
- Окружность вписанная в трапецию
- Формула определения радиуса вписанной в трапецию окружности
- Другие отрезки разносторонней трапеции
- Формулы определения длин отрезков проходящих через трапецию:
Трапеция
Трапеция — это четырехугольник, имеющий две параллельные стороны, являющиеся основаниями и две не параллельные стороны, являющиеся боковыми сторонами.
Содержание
Виды трапеций
Равнобедренная трапеция — это вид трапеции с равными боковыми сторонами.
Также встречаются такие названия, как равнобокая или равнобочная.
Прямоугольная трапеция — это трапеция, у которой углы при боковой стороне прямые.
Элементы трапеции
a, b — основания трапеции ( a параллельно b ),
m, n — боковые стороны трапеции,
h — высота трапеции (отрезок, соединяющий основания и при этом перпендикулярен им),
MN — средняя линия (отрезок, соединяющий середины боковых сторон).
Площадь трапеции
- Через полусумму оснований a, b и высоту h : S = \frac<2>\cdot h
- Через среднюю линию MN и высоту h : S = MN\cdot h
- Через диагонали d1, d2 и угол ( \sin \varphi ) между ними: S = \frac
d_ <2>\sin \varphi>
Свойства трапеции
Средняя линия трапеции
Средняя линия параллельна основаниям, равна их полусумме и разделяет каждый отрезок с концами, находящимися на прямых, которые содержат основания, (к примеру, высоту фигуры) пополам:
Сумма углов трапеции
Сумма углов трапеции, прилежащих к каждой боковой стороне, равна 180^ <\circ>:
\alpha + \beta = 180^
\gamma + \delta =180^
Равновеликие треугольники трапеции
Равновеликими, то есть имеющими равные площади, являются отрезки диагоналей и треугольники AOB и DOC , образованные боковыми сторонами.
Подобие образованных треугольников трапеции
Подобными треугольниками являются AOD и COB , которые образованы своими основаниями и отрезками диагоналей.
\triangle AOD \sim \triangle COB
Коэффициент подобия k находится по формуле:
Причем отношение площадей этих треугольников равно k^ <2>.
Отношение длин отрезков и оснований
Каждый отрезок, соединяющий основания и проходящий через точку пересечения диагоналей трапеции, поделен этой точкой в отношении:
Это будет являться справедливым и для высоты с самими диагоналями.
Описанная около трапеции окружность
Каждая равнобокая трапеция может содержать описанную окружность. Только равнобокую трапецию возможно вписать в окружность.
Вписанная в трапецию окружность
Треугольники AOB и DOC являются прямоугольными, если трапеция ABCD описана около окружности. Центром же вписанной окружности будет являться точка O .
Опущенные на гипотенузы, высоты этих треугольников, тождественны радиусу вписанной окружности, а высота трапеции тождественна диаметру вписанной окружности.
Источник
Что такое трапеция: определение, виды, свойства
В данной публикации мы рассмотрим определение, виды и свойства (касательно диагоналей, углов, средней линии, точки пересечения боковых сторон и т.д.) одной из основных геометрических фигур – трапеции.
Определение трапеции
Трапеция – это четырехугольник, две стороны которого параллельны, а остальные две – нет.
Параллельные стороны называются основаниями трапеции (AD и BC), две другие стороны – боковыми (AB и CD).
Угол при основании трапеции – внутренний угол трапеции, образованный ее основанием и боковой стороной, например, α и β.
Трапеция записывается путем перечисления его вершин, чаще всего, это ABCD. А основаниям обозначаются маленькими латинскими буквами, например, a и b.
Средняя линия трапеции (MN) – отрезок, соединяющий середины ее боковых сторон.
Высота трапеции (h или BK) – это перпендикуляр, проведенный от одного основания к другому.
Виды трапеций
Равнобедренная трапеция
Трапеция, боковые стороны которой равны, называется равнобедренной (или равнобокой).
Прямоугольная трапеция
Трапеция, у которой оба угла при одной из ее боковых сторон прямые, называется прямоугольной.
Разносторонняя трапеция
Трапеция является разносторонней, если ее боковые стороны не равны, и ни один из углов при основании не является прямым.
Свойства трапеции
Перечисленные ниже свойства применимы к любым видам трапеций. Свойства равнобедренной и прямоугольной трапеций представлены на нашем сайте в отдельных публикациях.
Свойство 1
Сумма углов трапеции, прилежащих к одной и той же боковой стороне, равна 180°.
Свойство 2
Средняя линия трапеции параллельна ее основаниям и равняется половине их суммы.
Свойство 3
Отрезок, который соединяет середины диагоналей трапеции, лежит на ее средней линии и равняется половине разности оснований.
- KL – отрезок, соединяющий середины диагоналей AC и BD
- KL лежит на средней линии трапеции MN
Свойство 4
Точки пересечения диагоналей трапеции, продолжений ее боковых сторон и середин оснований лежат на одной прямой.
- DK – продолжение боковой стороны CD
- AK – продолжение боковой стороны AB
- E – середина основания BC, т.е. BE = EC
- F – середина основания AD, т.е. AF = FD
Если сумма углов при одном основании равняется 90° (т.е. ∠DAB + ∠ADC = 90°), значит продолжения боковых сторон трапеции пересекаются под прямым углом, а отрезок, который соединяет середины оснований (ML) равняется половине их разности.
Свойство 5
Диагонали трапеции делят ее на 4 треугольника, два из которых (при основаниях) подобны, а два других (при боковых сторонах) равны по площади.
Свойство 6
Отрезок, проходящий через точку пересечения диагоналей трапеции параллельно ее основаниям, можно выразить через длины оснований:
Свойство 7
Биссектрисы углов трапеции при одинаковой боковой стороне взаимно перпендикулярны.
Свойство 8
В трапецию можно вписать окружность только в том случае, если сумма длин ее оснований равна сумме длин ее боковых сторон.
Т.е. AD + BC = AB + CD
Радиус вписанной в трапецию окружности равен половине ее высоты: R = h/2.
Источник
Трапеция. Формулы, признаки и свойства трапеции
Параллельные стороны называются основами трапеции, а две другие боковыми сторонами
Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.
- Основы трапеции — параллельные стороны
- Боковые стороны — две другие стороны
- Средняя линия — отрезок, соединяющий середины боковых сторон.
- Равнобедренная трапеция — трапеция, у которой боковые стороны равны
- Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам
Рис.1 | Рис.2 |
Основные свойства трапеции
AK = KB, AM = MC, BN = ND, CL = LD
3. Средняя линия трапеции параллельна основаниям и равна их полусумме:
m = | a + b |
2 |
BC : AD = OC : AO = OB : DO
d 1 2 + d 2 2 = 2 a b + c 2 + d 2
Сторона трапеции
Формулы определения длин сторон трапеции:
a = b + h · ( ctg α + ctg β )
b = a — h · ( ctg α + ctg β )
a = b + c· cos α + d· cos β
b = a — c· cos α — d· cos β
4. Формулы боковых сторон через высоту и углы при нижнем основании:
с = | h | d = | h |
sin α | sin β |
Средняя линия трапеции
Формулы определения длины средней линии трапеции:
1. Формула определения длины средней линии через длины оснований:
m = | a + b |
2 |
2. Формула определения длины средней линии через площадь и высоту:
m = | S |
h |
Высота трапеции
Формулы определения длины высоты трапеции:
h = c· sin α = d· sin β
2. Формула высоты через диагонали и углы между ними:
h = | sin γ · | d 1 d 2 | = | sin δ · | d 1 d 2 |
a + b | a + b |
3. Формула высоты через диагонали, углы между ними и среднюю линию:
h = | sin γ · | d 1 d 2 | = | sin δ · | d 1 d 2 |
2 m | 2 m |
4. Формула высоты трапеции через площадь и длины оснований:
h = | 2S |
a + b |
5. Формула высоты трапеции через площадь и длину средней линии:
h = | S |
m |
Диагонали трапеции
Формулы определения длины диагоналей трапеции:
d 1 = √ a 2 + d 2 — 2 ad· cos β
d 2 = √ a 2 + c 2 — 2 ac· cos α
2. Формулы диагоналей через четыре стороны:
d 1 = | √ | d 2 + ab — | a ( d 2 — c 2 ) |
a — b |
d 2 = | √ | c 2 + ab — | a ( c 2 — d 2 ) | a — b |
d 1 = √ h 2 + ( a — h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2
d 2 = √ h 2 + ( a — h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2
d 1 = √ c 2 + d 2 + 2 ab — d 2 2
d 2 = √ c 2 + d 2 + 2 ab — d 1 2
Площадь трапеции
Формулы определения площади трапеции:
1. Формула площади через основания и высоту:
S = | ( a + b ) | · h |
2 |
3. Формула площади через диагонали и угол между ними:
S = | d 1 d 2 | · sin γ | = | d 1 d 2 | · sin δ |
2 | 2 |
4. Формула площади через четыре стороны:
S = | a + b | √ | c 2 — | ( | ( a — b ) 2 + c 2 — d 2 | ) | 2 |
2 | 2( a — b ) |
5. Формула Герона для трапеции
S = | a + b | √ ( p — a )( p — b )( p — a — c )( p — a — d ) |
| a — b | |
где
p = | a + b + c + d | — полупериметр трапеции. |
2 |
Периметр трапеции
Формула определения периметра трапеции:
1. Формула периметра через основания:
Окружность описанная вокруг трапеции
Формула определения радиуса описанной вокруг трапеции окружности:
1. Формула радиуса через стороны и диагональ:
R = | a·c·d 1 |
4√ p ( p — a )( p — c )( p — d 1) |
где
p = | a + c + d 1 |
2 |
a — большее основание
Окружность вписанная в трапецию
Формула определения радиуса вписанной в трапецию окружности
1. Формула радиуса вписанной окружности через высоту:
r = | h |
2 |
Другие отрезки разносторонней трапеции
Формулы определения длин отрезков проходящих через трапецию:
1. Формула определения длин отрезков проходящих через трапецию:
KM = NL = | b | KN = ML = | a | TO = OQ = | a · b |
2 | 2 | a + b |
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Источник