Трапеция делиться диагоналями на 4 треугольника с площадями

Задача 12625 Диагонали трапеции делят ее на четыре.

Условие

Диагонали трапеции делят ее на четыре треугольника. Площади трёх их них равны 4, 8 и 16. Найдите площадь четвёртого.

Решение

1) Треугольники АВО и СDO — равновелики ( имеют одинаковую площадь): S(Δ ABO)=S(Δ COD)( cм. рис.1)
Доказательство. Проводим высоты ВН=СК=h.
S(Δ ABD)=S(Δ ACD)=AD*h/2.
S(Δ ABD)-S(Δ AOD)=S(Δ ACD)-S(Δ AOD).

2) Площади треугольников, имеющих общую высоту, относятся как основания.
Треугольники АВО и ВОС имеют общую высоту.
Треугольники АОD и CОD так же имеют общую высоту.
Поэтому
S(Δ ABO):S(Δ BOC)=S(ΔAOD):S(ΔCOD)=AO:OC
Пусть
S(Δ ABO)=S(Δ СOD)=x

x:S(Δ BOC)=S(ΔAOD):x
По свойству пропорции произведение крайних членов пропорции равно произведению средних.
S(Δ BOC)*S(ΔAOD)=x^2
Равенство возможно, если S(Δ BOC)=4;S(ΔAOD)=16;
S(Δ ABO)=S(Δ СOD)=8

4*16=8^2

Все решения

если площади треугольников равны 4 8 16, то это говорит о том что диагонали точкой пересечения делятся как 1:2. тогда площадь будет равна 4*2=8

Источник

Трапеция делиться диагоналями на 4 треугольника с площадями

В трапеции ABCD AD и BC — основания, O — точка пересечения диагоналей. Площадь треугольника AOB равна 12 см 2 , BC : AD = 3 : 4. Найдите площадь трапеции.

Диагонали делят трапецию на четыре треугольника, два из которых равновелики(треугольники ABO и COD, так как они прилежат к боковым сторонам), а два других подобны. Из подобия треугольников BOC и DOA следуют отношения:

.

Треугольники AOB и COB имеют общую высоту, проведенную из точки B, тогда отношение их площадей равно отношению соответствующих оснований:

, откуда

По теореме о площадях подобных треугольников имеем отношения:

откуда

Площадь всей трапеции равна сумме площадей всех треугольников, содержащихся в ней, то есть:

Ответ:

Источник

Олимпидада

А можно и по-другому.

Сначала докажите простое и симпатичное утверждение. Пусть О — точка пересечения диагоналей выпуклого четырёхугольника ABCD. Площади треугольников AOB, BOC, COD и DOA обозначим соответственно [m]S_1[/m], [m]S_2[/m], [m]S_3[/m] и [m]S_4[/m]. Тогда [m]S_1S_3=S_2S_4[/m].

Затем примените этот результат к вашей трапеции, заметив, что боковые треугольники равновелики.

Читайте также:  Как сделать рамку для прямоугольного зеркала

Задайте свой вопрос по математике
профессионалам

Другие вопросы на эту тему:

Планиметрия, подготовка к ЕГЭ

В трапеции ABCD отношение длин оснований AD и BC равно 3. Диагонали трапеции пересекаются в точке O, площадь треугольника AOB равна 6. Найдите площадь трапеции.

Знаю, что треугольники, образованные диагоналями и боковыми сторонами, равновеликие. Т.е. Площадь AOBравна площади COD. И площади треугольников AOD и BOC относятся как 3^2, т.е. 9. Как из этих данных вывести решение, не знаю.

Углы, образуемые стороной ромба

Дана трапеция ABCD, диагональ которой равны. Найдите периметр данной трапеции,…

Убойная задача по геометрии

Сегодня разбирали на занятии с учеником. Им её в школе на дом задали.

4-угольник ABCD вписан в окружность и описан около окружности. Вписанная окружность касается сторон 4-угольника в точках К,L,M,N. Отношение площадей 4-угольников KLMN и ABCD равно k. Угол между диагоналями AC и BD равен [m]\varphi[/m]. Радиус описанной окружности равен R. Найти площадь 4-угольника ABCD.

Задачка с районной олимпиады

Планиметрия, и непросто

ДАна прямоугольная трапеция ABCD, у которой боковая сторона АВ перпендикулярна основаниям. В трапецию вписана окружность. М — точка пересечения диагоналей. Найти радиус окружности, если площадь треугльника CMD равна S

Знаю про то, что суммы противоположных сторон равны, и знаю ответ — корень из S. Но ничего дельного в голову не приходит

Источник

Трапеция делиться диагоналями на 4 треугольника с площадями

Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.

$$ 4.<1>^<○>$$. Диагонали трапеции разбивают её на четыре треугольника с общей вершиной (рис. 20). Площади треугольников, прилежащих к боковым сторонам, равны, а треугольники прилежащие к основаниям — подобны.

$$ 4.<2>^<○>$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).

$$ 4.<3>^<○>$$. В равнобокой трапеции углы при основании равны (рис. 22).

$$ 4.<4>^<○>$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).

$$ 4.<5>^<○>$$. В равнобокой трапеции диагонали равны (рис. 24).

$$ 4.<6>^<○>$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме

Читайте также:  Замена моторчика дворников ваз 2107 без снятия трапеции дворников

(рис. 25, основания равны `a` и `b`, `a>b`).

$$ 4.<7>^<○>$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).

$$ 4.<8>^<○>$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).

$$ 4.<9>^<○>$$.В равнобокой трапеции `d^2=c^2+ab`, где `d` — диагональ, `c` — боковая сторона, `a` и `b` основания.

Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.<10>^<○>$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).

$$ 4.<11>^<○>$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.

Докажем, например, утверждение $$ 4.<9>^<○>$$ .

Применяем теорему косинусов (см. рис. 29а и б):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).

Проводим `CK«|\|«BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем

Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.

`AC=6`, `BM=MC`, `AN=ND`, `MN=5` (рис. 30а). Во всякой трапеции середины оснований и точка пересечения диагоналей лежат на од-ной прямой (свойство $$ 4.<2>^<○>$$). Треугольник `BOC` прямоугольный (по условию `AC_|_BD`), `OM` — его медиана, проведённая из вершины прямого угла, она равна половине гипотенузы: `OM=1/2BC`. Аналогично устанавливается `ON=1/2AD`, поэтому `MN=1/2(BC+AD)`. Через точку `D` проведём прямую, параллельную диагонали `AC`, пусть `K` — её точка пересечения с прямой `BC` (рис. 30б).

По построению `ACKD` — параллелограмм, `DK=AC`, `CK=AD` и `/_BDK=90^@`

(т. к. угол `BDK` — это угол между диагоналями трапеции).

Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то

Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.

Читайте также:  Замена трапеции стеклоочистителя ситроен джампер

Пусть `BC=a`, `AD=b`, и пусть `h` — высота трапеции (рис. 31). По свойству $$ 4.<1>^<○>$$ `S_(ABO)=S_(CDO)`, обозначим эту площадь `S_0` (действительно, `S_(ABD)=S_(ACD)`, т. к. у них общие основания и равные высоты, т. е. `S_(AOB)+S_(AOD)=S_(COD)+S_(AOD)`, откуда следует `S_(AOB)=S_(COD)`). Так как `S_(ABC)=S_0 + S_1=1/2ah` и `S_(ACD)=S_0+S_2=1/2bh`, то `(S_0+S_1)/(S_0 + S_2)=a/b`.

Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна

Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).

Найти радиус окружности, описанной около этой трапеции.

Трапеция равнобокая, по свойству $$ 4.<11>^<○>$$ около этой трапеции можно описать окружность. Пусть `BK_|_AD`, по свойству $$ 4.<6>^<○>$$

Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда

$$ 4.<12>^<○>$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.

$$ 4.<13>^<○>$$. Если `S_1` и `S_2` — площади треугольников, прилежащих к основаниям, то площади треугольников, прилежащих к боковым сторонам равны `sqrt(S_1S_2)`, а площадь всей трапеции равна `(sqrt(S_1) +sqrt(S_2))^2`.

$$ 4.<14>^<○>$$. Радиус окружности, описанной около трапеции, находится по формуле `R+a/(2sin alpha)`, где `a` — какая-то сторона (или диагональ трапеции), `alpha` — смотрящий на неё вписанный угол.

Источник

Трапеция делиться диагоналями на 4 треугольника с площадями

помогите плизззз срочно а то от мамы капец дою 35 балов.
\\Задание 1.

Доказать, что диагонали делят параллелограмм на 4 равновеликих треугольника.

Найти площадь равнобокой трапеции с основаниями 15 см и 39 см, в которой диагональ перпендикулярна к боковой стороне.

Соответствующие стороны двух подобных треугольников относятся как 2 : 3. Площадь второго треугольника равна 81 см2. Найдите площадь первого треугольника.

Основания трапеции относятся как 2:3, а ее площадь равна 50 см2. Найти площади:

а) двух треугольников, на которые данная трапеция делится диагональю

б) четырех треугольников, на которые данная трапеция делится диагоналями.

Комментарии

Ты в восьмом классе?

Домашней школе интернет урок?

Кстати, не ДОЮ, а ДАЮ

Лучшие помощники

Этот сайт использует cookies. Политика Cookies Вы можете указать условия хранения и доступ к cookies в своем браузере.

Источник

Поделиться с друзьями
Объясняем