Теоремы про диагонали параллелограмма

Параллелограмм. Формулы, признаки и свойства параллелограмма

Рис.1 Рис.2

Признаки параллелограмма

AB||CD, AB = CD (или BC||AD, BC = AD)

∠DAB = ∠BCD, ∠ABC = ∠CDA

∠ABC + ∠BCD = ∠BCD + ∠CDA = ∠CDA + ∠DAB = ∠DAB + ∠DAB = 180°

AC 2 + BD 2 = AB 2 + BC 2 + CD 2 + AD 2

Основные свойства параллелограмма

∠ABC = ∠CDA, ∠BCD = ∠DAB

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

∠ABC + ∠BCD = ∠BCD + ∠CDA = ∠CDA + ∠DAB = ∠DAB + ∠DAB = 180°

8. Диагонали параллелограмма пересекаются и точкой пересечения делят друг друга пополам:

AO = CO = d 1
2
BO = DO = d 2
2

AC 2 + BD 2 = 2AB 2 + 2BC 2

Стороны параллелограмма

Формулы определения длин сторон параллелограмма:

1. Формула сторон параллелограмма через диагонали и угол между ними:

2. Формула сторон параллелограмма через диагонали и другую сторону:

a = √ 2 d 1 2 + 2 d 2 2 — 4 b 2
2
b = √ 2 d 1 2 + 2 d 2 2 — 4 a 2
2

3. Формула сторон параллелограмма через высоту и синус угла:

a = h b
sin α
b = h a
sin α

4. Формула сторон параллелограмма через площадь и высоту:

a = S
ha
b = S
hb

Диагонали параллелограмма

Формулы определения длины диагонали параллелограмма:

d 1 = √ a 2 + b 2 — 2 ab·cosβ

d 2 = √ a 2 + b 2 + 2 ab·cosβ

d 1 = √ a 2 + b 2 + 2 ab·cosα

d 2 = √ a 2 + b 2 — 2 ab·cosα

d 1 = √ 2 a 2 + 2 b 2 — d 2 2

d 2 = √ 2 a 2 + 2 b 2 — d 1 2

4. Формула диагонали параллелограмма через площадь, известную диагональ и угол между диагоналями:

d 1 = 2S = 2S
d 2· sinγ d 2· sinδ
d 2 = 2S = 2S
d 1· sinγ d 1· sinδ

Периметр параллелограмма

Формулы определения длины периметра параллелограмма:

P = 2 a + 2 b = 2( a + b )

P = 2 a + √ 2 d 1 2 + 2 d 2 2 — 4 a 2

P = 2 b + √ 2 d 1 2 + 2 d 2 2 — 4 b 2

3. Формула периметра параллелограмма через одну сторону, высоту и синус угла:

P = 2( b + h b )
sin α
P = 2( a + h a )
sin α

Площадь параллелограмма

Формулы определения площади параллелограмма:

3. Формула площади параллелограмма через две диагонали и синус угла между ними:

S = 1 d 1 d 2 sin γ
2
S = 1 d 1 d 2 sin δ
2

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Параллелограмм. Свойства и признаки параллелограмма

Определение параллелограмма

Параллелограмм – четырехугольник, у которого противоположные стороны попарно параллельны.

Свойства параллелограмма

1. Противоположные стороны параллелограмма попарно равны

2. Противоположные углы параллелограмма попарно равны

3. Сумма смежных (соседних) углов параллелограмма равна 180 градусов

4. Сумма всех углов равна 360°

5. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам

6. Точка пересечения диагоналей является центром симметрии параллелограмма

7. Диагонали параллелограмма и стороны
связаны следующим соотношением:

8. Биссектриса отсекает от параллелограмма равнобедренный треугольник

Признаки параллелограмма

Четырехугольник является параллелограммом, если выполняется хотя бы одно из следующих условий:

1. Противоположные стороны попарно равны:

2. Противоположные углы попарно равны:

3. Диагонали пересекаются и в точке пересечения делятся пополам

4. Противоположные стороны равны и параллельны:

5.

Небольшой видеоролик о свойствах параллелограмма (в том числе ромба, прямоугольника, квадрата) и о том, как эти свойства применяются в задачах:

Читайте также:  Прямоугольные барные стойки для кухни


Формулы площади параллелограмма смотрите здесь.

Хорошую подборку задач на нахождение углов и длин в параллелограмме смотрите здесь.

Источник

Планиметрия. Страница 4

1 2 3 4 5 6 7 8 9 10 11 12

1.Параллелограмм

Параллелограмм — это геометрическая фигура, у которой диагонали пересекаются в точке, делящей их пополам, а противолежащие стороны параллельны.

Теорема: если диагонали четырехугольника пересекаются и делятся этой точкой пересечения пополам, то такой четырехугольник называется параллелограммом.

Доказательство. Пусть АВСD данный четырехугольник. Точка О — точка пересечения его диагоналей (рис.1). Тогда треугольники Δ АОD и Δ ВOC равны по двум сторонам и углу между ними. А следовательно, угол ODA равен углу CBO и угол OAD равен углу BCO. Таким образом, эти углы являются внутренними накрест лежащими для прямых AD и BC и секущей AC. А по признаку параллельности прямых, прямые AD и BC параллельны. Аналогично можно доказать, что прямая АВ параллельна ВС. Теорема доказана.

Рис.1 Теорема. Параллелограмм.

2.Свойство диагоналей параллелограмма

Теорема. если четырехугольник является параллелограммом, то его диагонали делятся точкой пересечения пополам.

Доказательство. Пусть дан параллелограмм АВСD. (Рис. 2)

Тогда его стороны AD и BC равны и лежат на параллельных прямых а и b. Если мы проведем секущие с и d так, чтобы прямая с проходила через точку А и С, а прямая d проходила через точку B и D, то угол ОАD будет равен углу ОСВ, а угол ОDА будет равен углу ОВС, как внутренние накрест лежащие. Следовательно, треугольники АОD и ВОС равны по стороне и прилегающим к ней углам. А отсюда следует и равенство сторон этих треугольников. Т.е. АО = ОС, а ВО = ОD. Сумма этих сторон и есть диагонали параллелограмма.

Рис.2 Теорема. Свойство диагоналей параллелограмма.

3.Ромб

Ромб — это геометрическая фигура, у которой все стороны равны.

Теорема. диагонали ромба пересекаются под прямым углом и являются биссектрисами его углов.

Доказательство. Пусть АВСD — ромб.(Рис. 3). Тогда треугольник АВС — равнобедренный. А это значит, что отрезок ВО, который является половиной диагонали, является биссектрисой медианой и высотой. Следовательно диагонали ромба АС и ВD пересекаются под прямым углом.

Рис.3 Теорема. Свойство диагоналей ромба.

Задача

В параллелограмме АВСD проведена биссектриса угла А, которая пересекает сторону ВС в точке Е. Необходимо найти отрезки ВЕ и ЕС, если АВ = 9 см, АD = 14 см (рис.4)

Решение. Так как прямая АЕ биссектриса, то это значит, что треугольники АВЕ и АЕР равны. Так как угол ВАЕ равен углу АЕР, а угол ЕАР равен углу ВЕА как внутренние накрест лежащие. Следовательно АВЕР — ромб, так как угол ВАЕ равен углу ЕАР ( по условию). Отсюда следует, что АВ = ВЕ = 9 см, а ЕС = 5 см.

4.Теорема Фалеса

Теорема: параллельные прямые, пересекающие стороны угла и отсекающие на одной его стороне равные отрезки, отсекают равные отрезки и на другой его стороне.

Доказательство. Пусть дан угол и пересекающие его параллельные прямые (рис.5). Точки А 1 А 2 А 3 А 4 и В 1 В 2 В 3 В 4 — точки пересечения. Проведем прямую ОЕ. Тогда А 1 ЕОА 3 — параллелограмм. И ОЕ = А 1 А 3 Треугольники В 1 В 2 Е и ОВ 2 В 3 равны по стороне (ОВ 2 = ЕВ 2 ) и прилегающим к ней углам. Из равенства треугольников следует, что В 1 В 2 = В 2 В 3 .

Читайте также:  Дроссель клапан прямоугольного сечения для чего

Рис.5 Теорема Фалеса.

5.Средняя линия треугольника

Теорема. средняя линия треугольника, которая соединяет середины двух данных сторон, параллельна третьей его стороне и равна ее половине.

Доказательство. Пусть АВС — треугольник. Отрезок ЕР соединяет середины сторон АВ и ВС (Рис. 5). Тогда по теореме Фалеса отрезок ЕР параллелен основанию АС, так как он делит стороны АВ и ВС на равные части.
Если на стороне АС отметить точку К, которая делит ее пополам и провести отрезок РК, то он будет параллелен стороне АВ. А геометрическая фигура АЕРК будет являться параллелограммом. Отсюда следует, что средняя линия ЕР равна половине основания.
Таким образом, утверждение, что средняя линия треугольника параллельна основанию и равна его половине, верно.

Рис.5 Теорема. Средняя линия треугольника.

6.Трапеция

Трапеция — это геометрическая фигура, у которой только две противолежащие стороны параллельны.

Теорема. средняя линия трапеции параллельна двум своим основаниям и равна их полусумме.

Доказательство. Пусть АВСD — трапеция.(Рис. 6). Проведем прямую от вершины В через середину стороны СD точку Н к основанию, т.е. достроим треугольник АВО. Тогда треугольники ВСН и DHO равны по сторонам СН и НD и прилегающим к ним углам. Следовательно отрезок АО равен сумме оснований АD и ВС. Рассмотрим треугольник АВО. ЕН это средняя линия треугольника, которая равна половине основания АО, т.е. полусумме оснований трапеции АD и ВС.

Рис.6 Теорема. Средняя линия трапеции.

7.Теорема о пропорциональных отрезках

Теорема. параллельные прямые, которые пересекают стороны угла, отсекают от его сторон пропорциональные отрезки.

Доказательство. Пусть дан угол и пересекающие его параллельные прямые.
Необходимо доказать, что AС 1 /AС = AВ 1 /AВ (Рис. 7).

Разобьем угол ВAС параллельными прямыми на n частей. Тогда АВ = ns, a AB1 = ms. Где s — отрезок некоторой длины. По теореме Фалеса эти прямые разбивают сторону AС также на равные части. Тогда:

Рис.7 Теорема о пропорциональных отрезках.

Отложим на луче АС отрезок АС 2 1 , который равен АС 2 = АС*АВ 1 /АВ (Рис.8). Если отрезок АС разбить на большое число частей, то между точками С 1 и С 2 будут деления. Одно из них обозначим как x и y.

Т.е. мы пришли к противоречию, так как изначально мы взяли отрезок АС 2 = АС*АВ 1 /АВ.

Рис.8 Теорема о пропорциональных отрезках.

Репетитор: Васильев Алексей Александрович

Предметы: математика, физика, информатика, экономика, программирование.

2000 руб / 120 мин — подготовка к ЕГЭ и ГИА для школьников. 3000 руб / 120 мин — индивидуально (базовый уровень). 2000 руб / 120 мин — студенты.

Тел. 8 916 461-50-69, email: alexey-it@ya.ru

Пример 1

Через точку пересечения диагоналей параллелограмма проведена прямая. Докажите, что ее отрезок, заключенный между параллельными сторонами, делится этой точкой пополам. (Рис.9)

Доказательство:

Пусть ABCD данный параллелограмм. EF данный отрезок, проходящий через точку О пересечения диагоналей.

Рассмотрим треугольники COF и AOE. Сторона АО треугольника АОЕ равна стороне ОС треугольника COF по свойству параллелограмма. Угол при вершине А треугольника АОЕ равен углу при вершине С треугольника COF, как внутренние накрест лежащие углы. Углы при вершине О у обоих треугольников равны как вертикальные.

Читайте также:  Задачи на решение равнобедренного треугольника с решением

Отсюда можно сделать вывод, что треугольники АОЕ и COF равны по второму признаку равенства треугольников (по стороне и прилегающим к ней углам). Следовательно, отрезки OF и ОЕ равны.

Рис.9 Задача. Через точку пересечения диагоналей.

Пример 2

Две стороны параллелограмма относятся как 3:4, а его периметр равен 2,8 м. Найдите стороны параллелограмма. (Рис.10)

Решение:

Пусть ABCD данный параллелограмм. Обозначим сторону АВ как 3х, а сторону ВС как 4х. Тогда составим следующее соотношение:

Рис.10 Задача. Две стороны параллелограмма.

Пример 3

В параллелограмме ABCD перпендикуляр, опущенный из вершины В на сторону AD, делит ее пополам. Найдите диагональ BD и стороны параллелограмма, если периметр параллелограмма равен 4 м, а периметр треугольника ABD равен 3 м. (Рис.11)

Решение:

Так как перпендикуляр BE, опущенный на сторону AD, делит ее пополам, то треугольники ABE и BED равны по первому признаку равенства треугольников (по двум сторонам и углу между ними). У них сторона АЕ равна стороне ED, сторона BE — общая, а углы при вершине Е равны 90°.Отсюда следует, что диагональ BD равна стороне АВ.

Обозначим сторону АВ как х, а сторону AD — как 2y. Тогда можно составить следующие соотношения:

PABCD = 2*(х + 2y) = 4, PABD = 2x +2y = 3

PABCD = 2х + 4y = 4, а 2х = 4 — 4y.

Тогда подставим 4 — 4y во второе уравнение:

4 — 4y + 2y = 3 и,следовательно, y = 0,5, а х = 1

Рис.11 Задача. В параллелограмме ABCD перпендикуляр.

Пример 4

В прямоугольный треугольник, каждый катет которого равен 8 см, вписан прямоугольник, имеющий с треугольником общий угол. Найдите периметр прямоугольника.(Рис.12)

Решение:

Пусть АВС данный треугольник. АВ = АС = 8 см. Тогда углы при вершинах В и С равны 45°. А следовательно, углы при вершине Е в треугольниках FEC и BDE также равны 45°. Если обозначить часть катета АF как х, то FC будет равно 8 — х.

Отсюда следует, что FE = AD = 8-х, а BD = х.

Теперь можно составить следующее соотношение:

РADEF = 2*(х + 8 — х) = 16 см.

Периметр прямоугольника ADEF равен 16 см.

Рис.12 Задача. В прямоугольный треугольник.

Пример 5

Докажите, что если у параллелограмма диагонали перпендикулярны, то он является ромбом.(Рис.13)

Доказательство:

Пусть АВСD данный параллелограмм. По свойству параллелограмма, у него противоположные стороны параллельны и равны. Следовательно, стороны АВ и CD можно рассматривать как параллельные прямые, а диагональ BD — как секущую. Тогда в треугольниках АВО и DOC углы при вершинах B и D равны как внутренние накрест лежащие. Так же как и углы при вершинах А и С.

Отсюда следует, что эти треугольники равны по второму признаку равенства треугольников (по стороне и прилегающим к ней углам). Сторона АВ = DC и внутренние накрест лежащие углы при них равны. Следовательно, АО = ОС, а ВО = OD.

Теперь рассмотрим треугольники AOD и DOC. Они также равны, но по первому признаку равенства треугольников. Сторона АО = ОС, а сторона OD у них общая. Углы при вершине О равны 90°. Т.е. по двум сторонам и углу между ними.

Следовательно, можно сделать вывод, что сторона AD = DC = AB = BC, т.е. данный параллелограмм является ромбом.

Рис.13 Задача. Докажите, что если у параллелограмма.

Источник

Поделиться с друзьями
Объясняем