Прямоугольный параллелепипед боковая грань боковое ребро

Прямоугольный параллелепипед

Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

На рисунке изображен прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Его основаниями являются прямоугольники $ABCD$ и $A_1B_1C_1D_1$, а боковые ребра $AA_1, BB_1, CC_1$ и $DD_1$ перпендикулярны к основаниям.

Свойства прямоугольного параллелепипеда:

  1. В прямоугольном параллелепипеде $6$ граней и все они являются прямоугольниками.
  2. Противоположные грани попарно равны и параллельны.
  3. Все двугранные углы прямоугольного параллелепипеда – прямые.
  4. Диагонали прямоугольного параллелепипеда равны.
  5. Прямоугольный параллелепипед имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.
  6. Любая грань прямоугольного параллелепипеда может быть принята за основание.
  7. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.
  8. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.

Чтобы были понятны формулы, введем обозначения:

$с$ — высота(она же боковое ребро);

$P_<осн>$ — периметр основания;

$S_<осн>$ — площадь основания;

$S_<бок>$ — площадь боковой поверхности;

$S_<п.п>$ — площадь полной поверхности;

$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.

$S_<бок>=P_<осн>·c=2(a+b)·c$ – площадь боковой поверхности равна произведению периметра основания на боковое ребро.

Дополнительные сведения, которые пригодятся для решения задач:

$а$ — длина стороны.

$d=a√3$ – диагональ равна длине стороны, умноженной на $√3$.

Пирамида

Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) — треугольники, имеющие общую вершину.

Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.

Объем любой пирамиды равен трети произведения основания и высоты.

В основании у произвольной пирамиды могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

  • $S=/<2>$, где $h_a$ — высота, проведенная к стороне $а$.
  • $S=/<2>$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
  • Формула Герона $S=√$, где $р$ — это полупериметр $p=/<2>$.
  • $S=p·r$, где $r$ — радиус вписанной окружности.
  • $S=/<4r>$, где $R$ — радиус описанной окружности.
  • Для прямоугольного треугольника $S=/<2>$, где $а$ и $b$ — катеты прямоугольного треугольника.
  • Для равностороннего треугольника $S=/<4>$, где $а$ — длина стороны.

В основании лежит четырехугольник.

  1. Прямоугольник.
    $S=a·b$, где $а$ и $b$ — смежные стороны.
  2. Ромб.
    $S=/<2>$, где $d_1$ и $d_2$ — диагонали ромба.
    $S=a^2·sin⁡α$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.
  3. Трапеция.
    $S=<(a+b)·h>/<2>$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.
  4. Квадрат.
    $S=a^2$, где $а$ — сторона квадрата.

Найдите объём многогранника, вершинами которого являются точки $C, A_1, B_1, C_1, D_1$ параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB=8, AD=12, AA_1=4$.

Изобразим прямоугольный параллелепипед и на нем отметим вершины многогранника $C, A_1, B_1, C_1, D_1$, получим в итоге четырехугольную пирамиду. В основании пирамиды лежит прямоугольник, так основание пирамиды и прямоугольного параллелепипеда совпадают.

Объем пирамиды, в основании которой лежит прямоугольник

Для нашего рисунка стороны прямоугольника – это $А_1В_1$ и $A_1D_1$.

В прямоугольном параллелепипеде противоположные ребра равны и параллельны, следовательно, $AB=А_1В_1=8; AD=A_1D_1=12$.

Высотой в пирамиде $CA_1B_1C_1D_1$ будет являться ребро $СС_1$, так как оно перпендикулярно основанию (из прямоугольного параллелепипеда).

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Источник

Параллелепипед

Что за слово такое мудреное – «параллелепипед»? Что за многогранник скрывается за этим словом?

Что-то должно быть связано с параллельностью, не правда ли?

Читай статью, смотри вебинар и ты все про него будешь знать!

Параллелепипед — коротко о главном

Параллелепипед — это четырехугольная призма (многогранник с \( \displaystyle 6\) гранями), все грани которой — параллелограммы.

Прямой параллелепипед —это параллелепипед, у которого \( \displaystyle 4\) боковые грани — прямоугольники.

Прямоугольный параллелепипед — параллелепипед, у которого все грани — прямоугольники

Куб — параллелепипед, у которого все грани квадраты.

Высота параллелепипеда – перпендикуляр, опущенный из любой вершины параллелепипеда на противоположную грань.

Свойства параллелепипеда

  • Противолежащие грани параллелепипеда параллельны и равны.
  • Диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
  • Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через точку пересечения диагоналей (центр параллелепипеда), делится ею пополам.
  • Все диагонали прямоугольного параллелепипеда равны между собой и равны сумме квадратов его измерений. \( \displaystyle <^<2>>=<^<2>>+<^<2>>+<^<2>>\).

Параллелепипед — подробнее

Параллелепипед – многоугольник, образованный пересечением трех пар параллельных плоскостей.

Если слишком сложно, просто посмотри на картинку.

Какую фигуру из планиметрии (геометрии с «плоскими» фигурами) напоминает параллелепипед?

Немного похоже на параллелограмм, правда? Только «потолще» и слово подлиннее.

Далее смотри на картинки, запоминай и не путай!

Высота – перпендикуляр, опущенный из любой вершины параллелепипеда на противоположную грань.

Та грань, на которую опущена высота, называется основанием.

Свойства параллелепипеда

  • Всеграни параллелепипеда – параллелограммы.
  • Противоположные грани параллелепипеда параллельны и равны.

Внимание: передняя и задняя грани параллелепипеда равны, верхняя и нижняя – тоже равны, но не равны (не обязаны быть равны) передняя и верхняя грани – потому что они не противоположные, а смежные.

  • Боковыеребра параллелепипеда равны.

  • Диагонали параллелепипеда пересекаются и точкой пересечения делятся пополам.

Прямой параллелепипед

Прямым называется параллелепипед, у которого боковые ребра перпендикулярны основанию.

У прямого параллелепипеда в основании – параллелограмм, а боковые грани – прямоугольники.

Прямоугольный параллелепипед

Прямоугольным называется параллелепипед, у которого в основании прямоугольник, а боковые ребра перпендикулярны основанию.

Это такая обувная коробка:

У прямоугольного параллелепипеда все грани – прямоугольники.

Давай-ка теперь выведем одну интересную формулу для диагонали прямоугольного параллелепипеда.

Диагональ прямоугольного параллелепипеда равна сумме квадратов его измерений.\( \displaystyle <^<2>>=<^<2>>+<^<2>>+<^<2>>\).

Видишь, как красиво? На теорему Пифагора похоже, правда? И формула эта как раз и получается из теоремы Пифагора.

Источник

Урок 29 Бесплатно Прямоугольный параллелепипед

На прошлых занятиях мы рассматривали плоские фигуры.

В реальности же каждый предмет, какой бы он формы не был, занимает некоторую часть пространства.

Даже у самого тонкого листа бумаги имеется толщина.

Если взять стопку таких листов, то объем стопки бумаги будет хорошо заметен.

Раздел геометрии, в котором изучаются фигуры и их свойства в пространстве, называется стереометрией.

Слово стереометрия происходит от древнегреческого «стериос»- объемный, пространственный и «метрио»- измерять.

Базовыми фигурами в пространстве, как и на плоскости, является точка, прямая и плоскость, из которых образуются объемные геометрические фигуры, тела, пространства.

Геометрическое тело, состоящее из плоских многоугольников, называют многогранником.

Существует огромное множество многогранников: выпуклые, невыпуклые, правильные и т.д.

На данном уроке познакомимся с выпуклым прямоугольным многоугольником, который называется параллелепипед.

Выясним, как прямоугольный параллелепипед выглядит и из каких элементов он состоит.

Рассмотрим его свойства.

Научимся изображать данный многоугольник на плоскости и вычислять площадь его поверхности.

Разберем несколько примеров решения задач.

Прямоугольный параллелепипед

Каждый может себе представить и знает, как выглядят детские кубики.

С кубиками и конструктором из брусочков прямоугольной формы многие знакомы с раннего детства: строили домики, башенки, дороги, затем все это радостно рушили.

Всем известно, как выглядит коробка конфет или долька шоколада. Многие получали подарки в красивой красочной коробке с ярким бантом, читали книги с увлекательными рассказами и сказками.

Все эти знакомые вам предметы — это объемные тела, которые в реальности можно посмотреть, потрогать со всех сторон.

Если обратим внимание на форму, то заметим, что все изображенные объекты имеют некоторое сходство, они представляют собой прямоугольный параллелепипед.

Слово «параллелепипед» происходит от двух греческих слов: «параллелос» — идущие рядом и «опипедон» — плоскость.

Прямоугольный параллелепипед-это объемная геометрическая фигура, многогранник, состоящий из шести прямоугольников.

Прямоугольный параллелепипед — это пространственная фигура.

Плоские фигуры, такие как квадрат, прямоугольник, треугольник изобразить на плоскости легко, они являются её частью.

Любую объемную фигуру изобразить на плоскости затруднительно.

Многогранник необходимо изобразить так, чтобы была заметна объемность фигуры.

Для этого все линии многогранника, невидимые глазу, принято изображать на рисунке пунктирными линиями, а видимые — сплошными линиями.

Пунктирная линия дает возможность понять наблюдателю, как расположен многогранник и определить, откуда необходимо смотреть на него.

Если мы изобразим параллелепипед только сплошной линией, то на рисунке будут изображены различные четырехугольники, соединенные между собой, а объемного представления многоугольника данный рисунок не даст.

Даже если нам известно, что изображен прямоугольный параллелепипед, то все равно непонятно какой стороной расположен многогранник к наблюдателю.

Если невидимые линии на рисунке изобразить пунктирными линиями, то у фигуры сразу будет заметен объем.

Прямоугольный параллелепипед изображают так:

Прямоугольники, из которых состоит прямоугольный параллелепипед, называют гранями, причем противоположные грани его попарно равны.

Верхняя грань равна нижней, правая равна левой, передняя грань равна задней.

Грань, на которой стоит прямоугольный параллелепипед, называют нижним основанием, противоположную грань называют верхним основанием параллелепипеда.

Остальные четыре грани называют боковыми гранями.

Стороны граней называют ребрами параллелепипеда.

Концы ребер, т.е. вершины граней, называют вершинами параллелепипеда.

На рисунке вершины изображены точками.

У меня есть дополнительная информация к этой части урока!

Для любого выпуклого многогранника, в том числе и для параллелепипеда, справедливо утверждение: Г + В – Р = 2, где

Г— число граней

В— число вершин

Р— число ребер

Данное утверждение говорит о том, что количество вершин и граней многоугольника вместе взятых всегда на два больше количества ребер.

Это правило называют теоремой Эйлера в честь ее создателя математика, механика Леонарда Эйлера.

Проверим справедливость теоремы Эйлера для разных фигур.

Параллелепипед состоит из следующих элементов: 6 граней (Г = 6), 8 вершин (В = 8), 12 ребер (Р = 12).

Г + В – Р = 6 + 8 – 12 = 14 – 12 = 2

Получили верное равенство.

Пирамида- это многогранник, в основании которого лежит многоугольник.

Грани пирамиды- это треугольники, сходящиеся в общую вершину.

Тетраэдр- пирамида, состоящая из 4 граней- равных треугольников (Г = 4), 4 вершин (В = 4) и 6 ребер (Р = 6).

Г + В – Р = 4 + 4 – 6 = 8 – 6 = 2

Получили верное равенство.

Четырехугольная пирамида имеет 5 граней: квадрат в основании и 4 треугольника в качестве боковых граней (Г = 5), 5 вершин (В = 5), 8 ребер (Р = 8).

Г + В – Р = 5 + 5 – 8 = 10 – 8 = 2

Получили верное равенство

Прямоугольный параллелепипед имеет три линейные величины (три измерения): ширину, длину и высоту.

Величину прямоугольного параллелепипеда определяют длинами трех ребер, исходящих из одной вершины.

Если все три величины прямоугольного параллелепипеда равны, то такой параллелепипед называют кубом.

Другими словами, куб — это частный случай параллелепипеда.

Куб — это правильный многоугольник, состоящий из шести одинаковых квадратов.

Куб по-другому называют правильный гексаэдр (от греческого «hex»- шесть и «hedra»- грань).

Куб выглядит так:

Он имеет все те же элементы, что и прямоугольный параллелепипед.

Все шесть граней куба равны, следовательно, и все 12 ребер между собой равны.

Куб так же имеет 2 основания: нижнее, на котором он стоит, и противоположное ему — верхнее.

Остальные четыре его грани — это боковые грани.

У меня есть дополнительная информация к этой части урока!

Куб относится к Платоновским телам.

Платоновскими телами называют объемные геометрические тела выпуклой формы, которые состоят из одинаковых по форме и размеру многоугольников, а в каждой вершине такого многогранника сходится одинаковое число ребер.

Всего существует пять Платоновских тел. Такие многогранники известны с древних времен.

В Древней Греции существовали различные философские школы, в которых пытались разъяснить существование и выяснить предназначение геометрических тел правильной формы.

Одна из основных и самых известных философских школ была Пифагорейская, названная так в честь ее создателя — древнегреческого философа, ученого Пифагора.

Пифагорейцы считали, что материя состоит из четырех составляющих: огня, воды, воздуха, земли.

Ассоциировали четыре правильных многогранника (тетраэдр, гексаэдр, октаэдр, икосаэдр) с этими стихиями.

Пятый правильный многогранник (додекаэдр) олицетворял все мироздание, Вселенную, его стали называть «пятая сущность».

Учения Пифагорейцев изложил в своих трудах древнегреческий философ, ученый Платон. В связи с этим правильные многогранники стали называть Платоновскими телами.

Число и вид граней

4

6

8

12

20

6

12

12

30

30

4

8

6

20

12

Число ребер, сходящихся в вершине

3

3

4

3

5

Пройти тест и получить оценку можно после входа или регистрации

Площадь поверхности прямоугольного параллелепипеда

Если посмотреть вокруг, то мы можем заметить огромное множество объектов, имеющих форму прямоугольного параллелепипеда или напоминающих его форму.

Так, например, большинство зданий и помещений, шкаф (тумбочка), столешница, аквариум, коробка, кирпичи и многое другое представляют собой прямоугольный параллелепипед.

Такой многогранник имеет широкое применение в различных областях нашей жизни, и это неспроста:

1) прямоугольная форма параллелепипеда удобна для деления целого на части

2) объекты прямоугольной формы легко надстраивать и совмещать

3) прямоугольный параллелепипед является одним из самых устойчивых многогранников

Часто приходится определять площадь поверхности объекта, имеющего форму прямоугольного параллелепипеда.

Давайте разберемся, как и с помощью каких формул можно вычислить площадь его поверхности.

Допустим, у нас есть коробка, имеющая форму прямоугольного параллелепипеда.

Попробуем изобразить развертку данного геометрического тела.

Развертка параллелепипеда — это изображение его поверхности в виде плоской фигуры, составленной из двух равных оснований: прямоугольников и четырех боковых граней (прямоугольников, попарно равных друг другу).

Площадь этой развертки- это и есть площадь поверхности прямоугольного параллелепипеда.

Так как прямоугольный параллелепипед состоит из шести граней, имеющих форму прямоугольников, причем противоположные грани равны по величине, то площадь поверхности прямоугольного параллелепипеда будет равна сумме площадей всех его шести граней.

Пусть для нашего прямоугольного параллелепипеда три ребра, выходящие из одной вершины, имеют значения а, b, h.

а— ширина прямоугольного параллелепипеда

b— длина прямоугольного параллелепипеда

h— высота прямоугольного параллелепипеда

Найдем площадь всех граней.

Воспользуемся формулой для расчета площади прямоугольника: площадь прямоугольника равна произведению его ширины на длину.

Ребра, лежащие напротив ребер а, b, h, будут иметь такие же значения длины, так как противолежащие ребра прямоугольного параллелепипеда равны.

В таком случае получаем:

1) Площадь нижнего основания равна произведению (a ∙ b)

2) Площадь верхнего основания также равна произведению (a ∙ b)

3) Площадь левой боковой и правой боковой граней равны, как противолежащие, площадь каждой из них определяется произведением (b h)

4) Передняя и задняя боковые грани равны, а значение площади каждой из них будет определяться произведением (а ∙ h)

Сложим площади всех граней прямоугольного параллелепипеда, получим общую площадь его поверхности.

Упростим выражение, вынесем 2 за скобку.

Формула площади поверхности прямоугольного параллелепипеда будет выглядеть так:

Площадь двух оснований прямоугольного параллелепипеда (это два прямоугольника) найдем по формуле:

Sосн = 2 (a ∙ b).

Площадь боковой поверхности прямоугольного параллелепипеда можно найти по формуле:

Sбок = 2h ∙ (a + b).

В нашем случае а, b— это стороны основания, h— это высота прямоугольного параллелепипеда (боковое ребро).

Так как основанием прямоугольного параллелепипеда является прямоугольник, то периметр основания прямоугольного параллелепипеда определяется равенством

Роснов = 2 ∙ (a + b).

Подставим Роснов в формулу Sбок = 2h ∙ (a + b) вместо выражения 2 ∙ (a + b).

Тогда площадь боковой поверхности можно найти так:

Sбок = Роснов ∙ h.

Определим площадь поверхности куба.

Известно, что куб — это прямоугольный параллелепипед, поверхность которого состоит из шести одинаковых граней, имеющих форму квадрата.

Чтобы найти площадь поверхности куба, необходимо сложить площади всех его граней.

Площадь одной грани куба найдем по формуле площади квадрата:

S = a 2

а— это сторона квадрата (ребро куба).

Так как все 6 граней куба представляют собой равные по площади квадраты, следовательно, чтобы найти площадь всей поверхности куба, необходимо площадь одной грани умножить на их количество.

Формула площади поверхности куба выглядит так:

Рассмотрим решение нескольких практических задач.

В процессе любого строительства или ремонта очень часто встает вопрос о том, сколько необходимо потратить строительного и отделочного материала или как рассчитать расход краски.

Задача №1.

Какое количество краски понадобится, чтобы полностью покрасить бак прямоугольной формы?

Ширина бака 2 метра, длина 3 метра, высота 1 метр.

Известно, что на 1 м 2 расходуется 200 г краски.

Чтобы рассчитать количество краски, которое нужно затратить на покраску бака, необходимо определить площадь окрашиваемой поверхности, затем, зная норму расхода краски на единицу площади, можно рассчитать расход краски на всю окрашиваемую поверхность.

Пусть m1— масса краски, которая расходуется на 1 м 2

m2— масса краски, которая необходима для покраски всего бака.

Задача №2

Сколько квадратных метров стекла понадобится на изготовление аквариума кубической формы длиной 100 см?

Для вычисления площади поверхности аквариума в квадратных метрах необходимо длину аквариума перевести из сантиметров в метры.

Вспомним, 1 м = 100 см.

Если бы аквариум необходимо было изготовить только из боковых стенок и основания, то из стекла пришлось бы вырезать всего 5 квадратных граней.

В таком случае формула для вычисления площади поверхности аквариума приняла бы вид

S = 5 а 2 .

Задача №3

Хозяйка решила покрасить стены в комнате.

Вычислите площадь поверхности стен комнаты, в которой имеется дверной проем площадью 2 м 2 и оконный проем площадью 1 м 2 .

Комната имеет форму прямоугольного параллелепипеда.

Ширина комнаты 3 метра, длина комнаты 4 метра, высота комнаты 3 метра.

Пусть Sc— общая площадь стен комнаты.

Sд— площадь дверного проема.

Sо— площадь оконного проема.

S— площадь стен комнаты за исключением площади дверного и оконного проемов.

Пройти тест и получить оценку можно после входа или регистрации

Источник

Читайте также:  Как узнать диаметр круга через длину окружности
Поделиться с друзьями
Объясняем