Прямоугольная трапеция с проведенным перпендикуляром к боковой стороне

Диагональ трапеции перпендикулярна стороне и биссектриса

Если диагональ равнобедренной трапеции перпендикулярна ее боковой стороне и диагональ — биссектриса угла трапеции, то что можно сказать о свойствах такой трапеции?

Если диагональ трапеции является биссектрисой ее угла, то боковая сторона трапеции равна одному из оснований трапеции.

Когда диагональ трапеции перпендикулярна боковой стороне, делить пополам тупой угол она не может (если один угол прямой, то и второй должен быть прямым, что невозможно).

Если диагональ равнобедренной трапеции перпендикулярна боковой стороне и делит острый угол трапеции пополам, то

1) диагональ разбивает трапецию на два треугольника: один — равнобедренный, другой — прямоугольный;

2) углы трапеции равны 60º и 120º;

3) большее основание трапеции в два раза больше меньшего основания и её боковых сторон;

4) высота трапеции равна половине её диагонали.

Дано : ABCD- трапеция,

AC — биссектриса ∠BAD.

1) Треугольник ABC — равнобедренный, треугольник ACD — прямоугольный;

2) ∠BAC=60º, ∠ABC=120º;

4) высота трапеции равна половине AC.

то треугольник ACD — прямоугольный.

∠BAC=∠DAC (так как AC — биссектриса ∠BAD по условию).

∠BCA=∠DAC (как внутренние накрест лежащие при AD ∥ BC и секущей AC).

Следовательно, треугольник ABC — равнобедренный с основанием AC (по признаку)

2) Пусть ∠BAC=∠DAC=∠BCA=xº.

Составляем уравнение:x+x+x+90=180, откуда x=30.

Таким образом, ∠BAC=∠DAC=∠BCA=30º, ∠BAD=∠BAC+∠DAC=60º.

∠BAD+∠ABC=180º (как внутренние односторонние при AD ∥ BC и секущей AB), откуда

3) В прямоугольном треугольнике ACD CD — катет, лежащий напротив угла в 30 градусов, следовательно,

AD=2CD, а так как CD=BC, то AD=2BC.

4) Опустим из вершины C высоту CF,

В прямоугольном треугольнике ACF CF — катет, лежащий напротив угла в 30º. Поэтому

Читайте также:  Окружность на восемь отрезков

Источник

Трапеция и ее свойства с определением и примерами решения

Содержание:

Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

На рисунке 66 изображена трапеция

Свойства трапеции

Рассмотрим некоторые свойства трапеции.

1. Сумма углов трапеции, прилежащих к боковой стороне, равна 180°.

Так как то (как сумма внутренних односторонних углов). Аналогично

2. Трапеция является выпуклым четырехугольником.

Поскольку то Аналогично Следовательно, трапеция — выпуклый четырехугольник.

Высотой трапеции называют перпендикуляр, проведенный из любой точки основания трапеции к прямой, содержащей другое ее основание.

Как правило, высоту трапеции проводят из ее вершины. На рисунке 67 — высота трапеции

Трапецию называют прямоугольной, если один из ее углов -прямой. На рисунке 68 — прямоугольная трапеция Очевидно, что является меньшей боковой стороной прямоугольной трапеции и ее высотой.

Трапецию называют равнобокой, если ее боковые стороны равны. На рисунке 69 — равнобокая трапеция

Свойства равнобокой трапеции

Рассмотрим некоторые важные свойства равнобокой трапеции.

1. В равнобокой трапеции углы при основании равны.

Доказательство:

1) Пусть в трапеции Проведем высоты трапеции и из вершин ее тупых углов и (рис. 70). Получили прямоугольник Поэтому

2) (по катету и гипотенузе). Поэтому

3) Также Но поэтому и Следовательно,

2. Диагонали равнобокой трапеции равны.

Доказательство:

Рассмотрим рисунок 71. (как углы при основании равнобокой трапеции), — общая сторона треугольников и Поэтому (по двум сторонам и углу между ними). Следовательно,

Пример:

— точка пересечения диагоналей равнобокой трапеции с основаниями и (рис. 71). Докажите, что

Доказательство:

(доказано выше). Поэтому По признаку равнобедренного треугольника — равнобедренный. Поэтому Поскольку и то (так как ).

Теорема (признак равнобокой трапеции). Если в трапеции углы при основании равны, то трапеция — равнобокая.

Читайте также:  Прямоугольное телосложение у женщин

Доказательство:

1) Пусть в углы при большем основании равны (рис. 70), то есть Проведем высоты и они равны.

2) Тогда (по катету и противолежащему углу). Следовательно, Таким образом, трапеция равнобокая, что и требовалось доказать.

Термин «трапеция» греческого происхождения (по-гречески «трапед-зион» означает «столик», в частности столик для обеда; слова «трапеция» и «трапеза» — однокоренные).

В «Началах» Евклид под термином «трапеция» подразумевал любой четырехугольник, не являющийся параллелограммом. Большинство математиков Средневековья использовали термин «трапеция» с тем же смыслом.

Трапеция в современной трактовке впервые встречается у древнегреческого математика Посидония (I в.), но начиная только с XVIII в. этот термин стал общепринятым для четырехугольников, у которых две стороны параллельны, а две другие — не параллельны.

Свойство средней линии трапеции

Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.

Рассмотрим свойство средней линии трапеции.

Теорема (свойство средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Доказательство:

Пусть — данная трапеция, — ее средняя линия (рис. 109). Докажем, что и

1) Проведем луч до его пересечения с лучом Пусть — точка их пересечения. Тогда (как внутренние накрест лежащие при параллельных прямых и и секущей (как вертикальные), (по условию). Следовательно, (по стороне и двум прилежащим углам), откуда (как соответственные стороны равных треугольников).

2) Поскольку то — средняя линия треугольника Тогда, по свойству средней линии треугольника, а значит, Но так как то

3) Кроме того,

Пример:

Докажите, что отрезок средней линии трапеции, содержащийся между ее диагоналями, равен полуразности оснований.

Доказательство:

Пусть — средняя линия трапеции — точка пересечения и — точка пересечения и (рис. 110). Пусть Докажем, что

Читайте также:  Прямоугольные плафоны на люстру

1) Так как и то, по теореме Фалеса, -середина — середина Поэтому — средняя линия треугольника — средняя линия треугольника

Тогда

2) — средняя линия трапеции, поэтому

3)

Пример:

В равнобокой трапеции диагональ делит острый угол пополам. Найдите среднюю линию трапеции, если ее основания относятся как 3 : 7, а периметр трапеции — 48 см.

Решение:

Пусть — данная трапеция, — ее средняя линия, (рис. 111).

1) Обозначим Тогда

2) (по условию). (как внутренние накрест лежащие при параллельных прямых и и секущей Поэтому Следовательно, — равнобедренный, у которого (по признаку равнобедренного треугольника). Но (по условию), значит,

3) Учитывая, что получим уравнение: откуда

4) Тогда

То, что средняя линия трапеции равна полусумме оснований, было известно еще древним египтянам; эту информацию содержал папирус Ахмеса (примерно XVII в. до н. э.).

О свойстве средней линии трапеции знали также и вавилонские землемеры; это свойство упоминается и в трудах Герона Александрийского (первая половина I в. н. э.).

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Площадь трапеции
  • Центральные и вписанные углы
  • Углы и расстояния в пространстве
  • Подобие треугольников
  • Площадь параллелограмма
  • Прямоугольник и его свойства
  • Ромб и его свойства, определение и примеры
  • Квадрат и его свойства

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Поделиться с друзьями
Объясняем