Прямоугольная трапеция описана вокруг окружности найти радиус окружности

Радиус описанной окружности трапеции

Как найти радиус описанной окружности для трапеции?

В зависимости от данных условия, сделать это можно разными способами. Готовой формулы радиуса описанной около трапеции окружности нет.

I. Радиус описанной около трапеции окружности как радиус окружности, описанной около треугольника, вершины которого — вершины трапеции

Описанная около трапеции окружность проходит через все её вершины, следовательно, является описанной для любого из треугольников, вершины которых являются вершинами трапеции.

В общем случае радиус описанной около треугольника окружности может быть найден по одной из формул

где a — сторона треугольника, α — противолежащий ей угол;

либо по формуле

где a, b, c — стороны, S — площадь треугольника.

Для трапеции ABCD радиус может быть найден, например, как радиус окружности, описанной около треугольника ABD:

где синус угла A можно найти из прямоугольного треугольника ABF:

III. Радиус описанной около трапеции окружности как расстояние до точки пересечения серединных перпендикуляров

Радиус описанной окружности — точка пересечения серединных перпендикуляров с сторонам трапеции. (Можно рассуждать иначе: в равнобедренном треугольнике AOD (AO=OD=R) высота ON является также медианой. Для треугольника BOC — аналогично).

Если известна высота трапеции KN=h, основания AD=a, BC=b, можно обозначить ON=x.

Если центр окружности лежит внутри трапеции, OK=h-x, из прямоугольных треугольников ANO и BKO можно выразить

и приравнять правые части

Решив это уравнения относительно x, можно найти R.

IV. Если диагональ трапеции перпендикулярна боковой стороне, центр описанной окружности лежит на середине большего основания и радиус равен половине большего основания.

точка O — середина AD

Если диагональ трапеции образует с боковой стороной тупой угол, центр описанной окружности лежит вне трапеции, за большим основанием.

I вариант нахождения радиуса для этого случая не изменяется.

Во II случае OK=h+x, соответственно, изменяется уравнение для нахождения x и R.

Позже рассмотрим конкретные задачи нахождения радиуса описанной около трапеции окружности.

Источник

Прямоугольная трапеция описана вокруг окружности найти радиус окружности

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 42. Найдите радиус окружности.

Читайте также:  481 найдите площадь прямоугольной трапеции

В четырехугольник можно вписать окружность тогда и только тогда, когда

Периметр прямоугольной трапеции, описанной около окружности, равен 32, её большая боковая сторона равна 9. Найдите радиус окружности.

Пусть радиус вписанной окружности равен r, тогда длина меньшей боковой стороны равна 2r. Суммы длин противоположных сторон описанного вокруг окружности четырехугольника равны, поэтому сумма оснований трапеции равна сумме длин ее боковых сторон или 2r + 9. Тогда для периметра трапеции имеем 2(2r + 9) = 32, откуда r = 3,5.

Периметр прямоугольной трапеции, описанной около окружности, равен 80, ее большая боковая сторона равна 30. Найдите радиус окружности.

Это задание ещё не решено, приводим решение прототипа.

Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

Радиус окружности, вписанной в прямоугольную трапецию, равен половине ее высоты, то есть стороне AD. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. Каждая из этих сумм равна половине периметра четырехугольника, поэтому Тогда и

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 28. Найдите радиус окружности.

Это задание ещё не решено, приводим решение прототипа.

Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

Радиус окружности, вписанной в прямоугольную трапецию, равен половине ее высоты, то есть стороне AD. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. Каждая из этих сумм равна половине периметра четырехугольника, поэтому Тогда и

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 31. Найдите радиус окружности.

Это задание ещё не решено, приводим решение прототипа.

Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

Радиус окружности, вписанной в прямоугольную трапецию, равен половине ее высоты, то есть стороне AD. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. Каждая из этих сумм равна половине периметра четырехугольника, поэтому Тогда и

Читайте также:  Один угол параллелограмма больше другого на 104

Периметр прямоугольной трапеции, описанной около окружности, равен 64, ее большая боковая сторона равна 28. Найдите радиус окружности.

Это задание ещё не решено, приводим решение прототипа.

Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

Радиус окружности, вписанной в прямоугольную трапецию, равен половине ее высоты, то есть стороне AD. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. Каждая из этих сумм равна половине периметра четырехугольника, поэтому Тогда и

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 49. Найдите радиус окружности.

Это задание ещё не решено, приводим решение прототипа.

Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

Радиус окружности, вписанной в прямоугольную трапецию, равен половине ее высоты, то есть стороне AD. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. Каждая из этих сумм равна половине периметра четырехугольника, поэтому Тогда и

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 40. Найдите радиус окружности.

Это задание ещё не решено, приводим решение прототипа.

Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

Радиус окружности, вписанной в прямоугольную трапецию, равен половине ее высоты, то есть стороне AD. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. Каждая из этих сумм равна половине периметра четырехугольника, поэтому Тогда и

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 39. Найдите радиус окружности.

Это задание ещё не решено, приводим решение прототипа.

Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

Радиус окружности, вписанной в прямоугольную трапецию, равен половине ее высоты, то есть стороне AD. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. Каждая из этих сумм равна половине периметра четырехугольника, поэтому Тогда и

Читайте также:  Если центральный угол опирается на хорду равную радиусу окружности

Периметр прямоугольной трапеции, описанной около окружности, равен 100, ее большая боковая сторона равна 47. Найдите радиус окружности.

Это задание ещё не решено, приводим решение прототипа.

Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

Радиус окружности, вписанной в прямоугольную трапецию, равен половине ее высоты, то есть стороне AD. В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны. Каждая из этих сумм равна половине периметра четырехугольника, поэтому Тогда и

Источник

Найти радиус описанной около трапеции окружности

Рассмотрим задачи, в которых нужно найти радиус описанной около трапеции окружности.

1) Найти радиус окружности, описанной около трапеции, основания которой равны 11 см и 21 см, а диагональ — 20 см.

Дано : ABCD — трапеция, AD∥BC, AD=21 см, BC=11 см, BD=20 см, окружность (O; R) — описанная около ABCD.

Радиус описанной около трапеции окружности можно найти как радиус окружности, описанной около треугольника ABD:

Таким образом, задача сводится к нахождению синуса угла A.

1) Описать окружность можно только около равнобедренной трапеции, следовательно, CD=AB.

2) Проведём высоту трапеции BF.

Тогда FD=AD-AF=21-5=16 (см).

3) Рассмотрим треугольник BDF. ∠BFD=90º (так как BF — высота трапеции).

4) Рассмотрим прямоугольный треугольник ABF.

По теореме Пифагора

2) Найти радиус описанной около трапеции окружности, если известно, что её боковые сторона и меньшее основание равны 10 см, а один из углов 60º.

Дано : ABCD — трапеция, AD∥BC,

AB=BC=CD=10 см, ∠D=60º,

окружность (O;R) — описанная около ABCD.

Проведём диагональ BD.

Треугольник ABC — равнобедренный с основанием AC (AB=BC по условию).

Следовательно, ∠BAC=∠BCA (как углы при основании).

∠BCA=∠DAC (как внутренние накрест лежащие при AD∥BC и секущей AC).

Отсюда ∠BAC=∠DAC, то есть диагональ AC является биссектрисой угла BAD.

∠BAD=∠D=60º (как углы при основании равнобедренной трапеции). Поэтому

Рассмотрим треугольник ACD.

Так как сумма углов треугольника равна 180º,

Катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы. Поэтому AD=2∙CD=2∙10=20(см). Следовательно, радиус

Источник

Поделиться с друзьями
Объясняем