Окружность описана около параллелограмма можно описать окружность

Четырехугольники, вписанные в окружность. Теорема Птолемея

Вписанные четырехугольники и их свойства
Теорема Птолемея

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Читайте также:  Прямоугольный клумбы схемы с описанием

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:


где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Фигура Рисунок Свойство
Окружность, описанная около параллелограмма Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:


где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Окружность, описанная около параллелограмма
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Окружность, описанная около параллелограмма

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромба

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапеции

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоида

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольник

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Докажем, что справедливо равенство:

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

откуда вытекает равенство:

(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Источник

Можно ли вписать окружность в параллелограмм и наоборот

Параллелограмм, вписанный в окружность

Параллелограмм — это четырехугольник с попарно параллельными и равными противолежащими сторонами.

Все четыре стороны этой фигуры принадлежат одной плоскости.

Четырехугольник можно вписать в окружность, если сумма его противоположных углов равна 180°. Если сумма противоположных углов параллелограмма равна 180°, то такой параллелограмм — прямоугольник.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Точка пересечения диагоналей прямоугольника является центром описанной окружности.

Свойство радиуса окружности, описанной около прямоугольника

Радиус описанной окружности равен половине диагонали прямоугольника.

Пример решения задачи. Параллелограмм и описанная окружность

Дано: прямоугольник со сторонами 8 см и 6 см.

Найти: радиус описанной окружности.

Решение: диагональ прямоугольника равна \(\sqrt<8^2+6^2>=10 (см)\) ; следовательно, радиус описанной окружности равен 10÷2=5 (см).

Ответ: 5 см.

Параллелограмм, описанный около окружности

Когда параллелограмм можно описать около окружности? Другими словами — при каком условии можно вписать окружность или круг в параллелограмм?

Так как параллелограмм — это частный случай четырехугольника, будет действовать то же правило, что и для любого другого четырехугольника. Окружность можно вписать в параллелограмм, только если суммы его противоположных сторон равны.

Это условие выполняется только для тех параллелограммов, у которых все стороны равны, то есть только для ромба (и квадрата, как частного случая ромба).

Если в задаче дано, что в параллелограмм вписана окружность, то из этого условия можно сделать вывод, что все его стороны равны, и данный параллелограмм является ромбом. Если по условию один из углов этого параллелограмма прямой, то такой параллелограмм — квадрат.

Радиус окружности, вписанной в ромб

Радиус вписанной в ромб окружности можно найти несколькими способами.

Если известны диагонали и сторона

  • r — радиус вписанной окружности;
  • а — сторона ромба;
  • D — большая диагональ;
  • d — меньшая диагональ.

Если известны диагонали

  • r — радиус вписанной окружности;
  • D — большая диагональ;
  • d — меньшая диагональ.

Если известны сторона и угол

  • r — радиус вписанной окружности;
  • а — сторона ромба;
  • α — острый угол.

Если известны диагонали и угол

  • r — радиус вписанной окружности;
  • D — большая диагональ;
  • d — меньшая диагональ;
  • α — острый угол.

Если известны диагонали и сторона

  • r — радиус вписанной окружности;
  • D — большая диагональ;
  • d — меньшая диагональ;
  • а — сторона ромба.

Если известна высота ромба

  • r — радиус вписанной окружности;
  • h — высота ромба.

Если известны площадь и полупериметр

  • r — радиус вписанной окружности;
  • S — площадь ромба;
  • p — полупериметр ромба.

Задачи. Параллелограмм и вписанная окружность.

Дано: параллелограмм со вписанной окружностью. Одна из сторон параллелограмма равна 5 см.

Найти: периметр параллелограмма.

Решение: в параллелограмм можно вписать окружность только если это ромб. Четыре стороны ромба равны. Следовательно, периметр данного параллелограмма равен 5·4=20 (см).

Ответ: 20 см.

Дано: параллелограмм MNKP с диагоналями 12 см и 16 см. В MNKP вписана окружность.

Найти: радиус вписанной окружности.

Решение:

Из того, что в параллелограмм MNKP вписана окружность, делаем вывод, что MNKP — ромб.

Параллелограмм MNKP не является квадратом, так как его диагонали не равны. MK=16 см, NP=12 см.

ΔMOP прямоугольный, \(∠MOP=90°. MO=8 см, OP=6 см. S_=(8·6)÷2=24 (см^2)\) .

По теореме Пифагора \( MP=\sqrt=\sqrt<8^2+6^2>=10 (см)\) .

Полупериметр MNKP равен 20 см.

Следовательно, радиус вписанной окружности равен

Источник

Читайте также:  Abcd параллелограмм подобны треугольники
Поделиться с друзьями
Объясняем