- Окружность касается внутренним образом другой окружности
- Касание двух окружностей
- Окружность касается внутренним образом другой окружности
- Две окружности на плоскости. Общие касательные к двум окружностям
- Взаимное расположение двух окружностей
- Формулы для длин общих касательных и общей хорды двух окружностей
- Доказательства формул для длин общих касательных и общей хорды двух окружностей
Окружность касается внутренним образом другой окружности
Задание 16. Две окружности касаются внутренним образом в точке С. Вершины A и B равнобедренного прямоугольного треугольника ABC с прямым углом C лежат на меньшей и большей окружностях соответственно. Прямая АС вторично пересекает большую окружность в точке Е, а прямая ВС вторично пересекает меньшую окружность в точке D.
а) Докажите, что прямые AD и BE параллельны.
б) Найдите АС, если радиусы окружностей равны 3 и 4.
а) Пусть CL — общая касательная двух окружностей, причём точки L и В лежат по одну сторону от прямой АС. Тогда по теореме об угле между касательной и хордой
Значит, прямые AD и BE параллельны, поскольку соответственные углы CAD и СЕВ при пересечении этих прямых прямой АЕ равны.
б) Поскольку угол АСВ прямой, AD и BE — диаметры меньшей и большей окружностей соответственно. Прямоугольные треугольники ACD и ЕСВ подобны по острому углу () с коэффициентом подобия
.
Источник
Касание двух окружностей
Две окружности, имеющие общую точку, касаются в этой точке, если они имеют в ней общую касательную.
Общая точка двух окружностей называется точкой касания окружностей.
Касание окружностей может быть внешним и внутренним.
Внешнее касание окружностей — это касание, при котором центры окружностей лежат по разные стороны от общей касательной.
Внутреннее касание окружностей — касание, при котором центры окружностей лежат по одну сторону от общей касательной.
Касающиеся окружности имеют только одну общую точку — точку касания.
Центры касающихся окружностей и их общая точка касания лежат на одной прямой.
При любом виде касания по свойству касательной касательная перпендикулярна радиусам, проведённым в точку касания:
По теореме о существовании и единственности прямой, перпендикулярной данной,через точку A можно провести только одну прямую, перпендикулярную данной прямой k.
Следовательно, все три точки: центры окружностей O1, O2 и A лежат на одной прямой.
Что и требовалось доказать .
При внешнем касании расстояние между центрами окружностей равно сумме их радиусов:
При внутреннем касании расстояние между центрами окружностей равно разности радиусов:
Источник
Окружность касается внутренним образом другой окружности
Две окружности касаются внутренним образом. Третья окружность касается первых двух и их линии центров.
а) Докажите, что периметр треугольника с вершинами в центрах трёх окружностей равен диаметру наибольшей из этих окружностей.
б) Найдите радиус третьей окружности, если известно, что радиусы первых двух равны 4 и 1.
а) Пусть АВ — диаметр большей из трёх окружностей, О — её центр, O1 — центр окружности радиуса r у касающейся окружности с диаметром АВ в точке А, O2 — центр окружности радиуса R, касающейся окружности с диаметром АВ в точке С, окружности с центром O1 — в точке D, отрезка АВ — в точке Е. Точки О, O2 и С лежат на одной прямой, поэтому OO2 = ОС − O2С = ОС − R. Аналогично ОО1 = OA − О1А = ОА − r и O1O2 = O1D + O2D = r + R. Следовательно, периметр треугольника OO1O2 равен
О1E = OO1 + ОЕ, то
Полученное уравнение не имеет корней, что означает, что данная конфигурация невозможна.
Рассмотрим случай, когда точка Е лежит между точками О и А. В этом случае О1E = OO1 − ОЕ, то есть Из этого уравнения находим, что
Ответ: б)
Приведем решение пункта б) Наиля Мусина.
Пусть радиус третьей окружности равен R. Рассмотрим треугольник OO1O2:
По доказанному в пункте а) периметр треугольника OO1O2 равен 8. Найдем площадь этого треугольника по формуле Герона:
Заметим, что радиус R третьей окружности является высотой данного треугольника, следовательно,
Критерии оценивания выполнения задания | Баллы | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Получен обоснованный ответ в пункте б) имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Имеется верное доказательство утверждения пункта а) при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, Источник Две окружности на плоскости. |
Взаимное расположение двух окружностей
Фигура | Рисунок | Свойства |
Две окружности на плоскости | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Внешнее касание двух окружностей | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Каждая из окружностей лежит вне другой | ||
Расстояние между центрами окружностей больше суммы их радиусов | ||
Внешнее касание двух окружностей | ||
Расстояние между центрами окружностей равно сумме их радиусов | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Расстояние между центрами окружностей больше разности их радиусов, но меньше суммы их радиусов r1 – r2 лежит внутри другой | ||
Внутренняя касательная к двум окружностям | ||
Внутреннее касание двух окружностей | ||
Окружности пересекаются в двух точках | ||
Внешнее касание двух окружностей | ||
Внешняя касательная к двум окружностям | |
Внутренняя касательная к двум окружностям | |
Внутреннее касание двух окружностей | |
Окружности пересекаются в двух точках | |
Внешнее касание двух окружностей | |
Каждая из окружностей лежит вне другой | |
Внешняя касательная к двум окружностям | |||||||||||||||||||||
Внутренняя касательная к двум окружностям | |||||||||||||||||||||
Внутреннее касание двух окружностей | |||||||||||||||||||||
Окружности пересекаются в двух точках | |||||||||||||||||||||
Внешнее касание двух окружностей | |||||||||||||||||||||
Каждая из окружностей лежит вне другой | |||||||||||||||||||||
Фигура | Рисунок | Формула | ||||||||||||
Внешняя касательная к двум окружностям | ||||||||||||||
Внутренняя касательная к двум окружностям | ||||||||||||||
Общая хорда двух пересекающихся окружностей |
Внешняя касательная к двум окружностям | ||||
Внутренняя касательная к двум окружностям | ||||
Общая хорда двух пересекающихся окружностей | ||||
Внешняя касательная к двум окружностям |
Внутренняя касательная к двум окружностям |
Общая хорда двух пересекающихся окружностей |
Длина общей хорды двух окружностей вычисляется по формуле Доказательства формул для длин общих касательных и общей хорды двух окружностейУтверждение 1 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d (рис.1), то длина общей внешней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 2 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей внутренней касательной к этим окружностям вычисляется по формуле что и требовалось доказать. Утверждение 3 . Если расстояние между центрами двух окружностей радиусов r1 и r2 равно d , то длина общей хорды AB этих окружностей вычисляется по формуле Доказательство . Для того, чтобы найти длину общей хорды AB двух окружностей, введём, как показано на рисунке 3, Источник |