Окружность имеет бесконечно много центров симметрии 2 прямая не имеет осей симметрии 3 правильный

Окружность имеет бесконечно много центров симметрии 2 прямая не имеет осей симметрии 3 правильный

Какие из следующих утверждений верны?

1) Около любого правильного многоугольника можно описать не более одной окружности.

2) Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.

3) Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.

4) Около любого ромба можно описать окружность.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Около любого правильного многоугольника можно описать не более одной окружности.»— верно, около любого правильного многоугольника можно описать окружность, и притом только одну.

2) «Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.» — верно, треугольник с такими сторонами является прямоугольным, таким образом, центр окружности лежит на гипотенузе.

3) «Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.» — верно, диагонали квадрата точкой пересечения делятся пополам, таким образом, центром окружности является точка пресечения диагоналей.

4) «Около любого ромба можно описать окружность.» — неверно, чтобы около четырёхугольника можно было описать окружность, необходимо, чтобы сумма противоположных углов четырёхугольника составляла 180°. Это верно не для любого ромба.

Источник

Репетитор по математике

Меня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата».

Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка]

Стоимость занятий

Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.

Видеокурсы подготовки к ЕГЭ-2021

Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.

Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.

Группа Вконтакте

В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.

Преимущества

Педагогический стаж

Сейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области.

Собственная методика

За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.

Читайте также:  Прямоугольное проецирование на три плоскости проекций черчение 8 класс

Гарантированный результат

За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.

Индивидуальная работа

Все дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал.

Источник

Окружность имеет бесконечно много центров симметрии 2 прямая не имеет осей симметрии 3 правильный

Какие из следующих утверждений верны?

1) Около любого правильного многоугольника можно описать не более одной окружности.

2) Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.

3) Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.

4) Около любого ромба можно описать окружность.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Около любого правильного многоугольника можно описать не более одной окружности.»— верно, около любого правильного многоугольника можно описать окружность, и притом только одну.

2) «Центр окружности, описанной около треугольника со сторонами, равными 3, 4, 5, находится на стороне этого треугольника.» — верно, треугольник с такими сторонами является прямоугольным, таким образом, центр окружности лежит на гипотенузе.

3) «Центром окружности, описанной около квадрата, является точка пересечения его диагоналей.» — верно, диагонали квадрата точкой пересечения делятся пополам, таким образом, центром окружности является точка пресечения диагоналей.

4) «Около любого ромба можно описать окружность.» — неверно, чтобы около четырёхугольника можно было описать окружность, необходимо, чтобы сумма противоположных углов четырёхугольника составляла 180°. Это верно не для любого ромба.

Источник

Окружность имеет бесконечно много центров симметрии 2 прямая не имеет осей симметрии 3 правильный

Какие из следующих утверждений верны?

1) Правильный шестиугольник имеет шесть осей симметрии.

2) Прямая не имеет осей симметрии.

3) Центром симметрии ромба является точка пересечения его диагоналей.

4) Равнобедренный треугольник имеет три оси симметрии.

Если утверждений несколько, запишите их номера в порядке возрастания.

Проверим каждое из утверждений.

1) «Правильный шестиугольник имеет шесть осей симметрии.»— верно, при четном количестве углов оси симметрии проходят через противоположные вершины и через середины противоположных сторон.

2) «Прямая не имеет осей симметрии.» — неверно, прямая имеет бесконечное число осей симметрии.

3) «Центром симметрии ромба является точка пересечения его диагоналей.» — верно, ромб является параллелограммом, а середина диагонали параллелограмма является его центром симметрии.

4) «Равнобедренный треугольник имеет три оси симметрии.» — неверно, у равнобедренного треугольника одна ось симметрии.

Какие из следующих утверждений верны?

1) Центром симметрии прямоугольника является точка пересечения диагоналей.

2) Центром симметрии ромба является точка пересечения его диагоналей.

3) Правильный пятиугольник имеет пять осей симметрии.

4) Центром симметрии равнобедренной трапеции является точка пересечения ее диагоналей.

Если утверждений несколько, запишите их номера в порядке возрастания.

Читайте также:  Около треугольника abc описана окружность касательная к окружности

Проверим каждое из утверждений.

1) «Центром симметрии прямоугольника является точка пересечения диагоналей.» — верно, прямоугольник является параллелограммом, а середина диагонали параллелограмма является его центром симметрии.

2) «Центром симметрии ромба является точка пересечения его диагоналей.» — верно, ромб является параллелограммом, а середина диагонали параллелограмма является его центром симметрии.

3) «Правильный пятиугольник имеет пять осей симметрии.» — верно, при нечетном количестве углов каждая ось симметрии проходи через вершину и середину противоположной стороны.

4) «Центром симметрии равнобедренной трапеции является точка пересечения ее диагоналей.» — неверно, у равнобедренной трапеции нет точек симметрии.

Сколько всего осей симметрии имеет фигура, изображённая на рисунке?

Ось симметрии данной фигуры — биссектрисса, проходящая через вершину звезды. Данная фигура имеет 5 осей симметрии.

Какие из данных утверждений верны? Запишите их номера.

1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.

2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.

3) У равнобедренного треугольника есть центр симметрии.

Проверим каждое из утверждений.

1) «Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности» — неверно, т. к. для того, чтобы утверждать, пересекаются окружности или нет, нужно ещё знать взаимное положение их центров.

2) «Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны» — верно; по признаку параллельных прямых.

3) «У равнобедренного треугольника есть центр симметрии» — неверно, верным будет утверждение: «У равнобедренного треугольника есть ось симметрии».

Какие из данных утверждений верны? Запишите их номера.

1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.

2) В любом прямоугольнике диагонали взаимно перпендикулярны.

3) У равностороннего треугольника есть центр симметрии.

Проверим каждое из утверждений.

1) «Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны» — верно, по первому признаку подобия треугольников. Заметим, что в признаке подобия треугольников говорится о двух углах, однако если два угла одного треугольника соответственно равны двум углам другого треугольника, то и третий угол одного треугольника равен третьему углу другого.

2) «В любом прямоугольнике диагонали взаимно перпендикулярны» — неверно; верным будет утверждение: «В любом ромбе диагонали взаимно перпендикулярны».

3) «У равностороннего треугольника есть центр симметрии» — неверно, у равностороннего треугольника есть оси симметрии.

Какие из данных утверждений верны? Запишите их номера.

1) Через две различные точки на плоскости проходит единственная прямая.

2) В любом прямоугольнике диагонали взаимно перпендикулярны.

3) У равностороннего треугольника три оси симметрии.

Проверим каждое из утверждений.

1) «Через две различные точки на плоскости проходит единственная прямая» — верно.

2) «В любом прямоугольнике диагонали взаимно перпендикулярны» — неверно; верным будет утверждение: «В любом ромбе диагонали взаимно перпендикулярны».

3) « У равностороннего треугольника три оси симметрии» — верно и эти оси симметрии совпадают с биссектрисами.

Укажите номера верных утверждений.

1) Диаметр делит окружность на две равные дуги.

2) Параллелограмм имеет две оси симметрии.

3) Площадь треугольника равна его основанию, умноженному на высоту.

Проверим каждое из утверждений.

1) «Диаметр делит окружность на две равные дуги» — верно, по свойству диаметра.

2) «Параллелограмм имеет две оси симметрии» — неверно. Параллелограмм имеет центр симметрии, этим центром является точка пересечениия диагоналей параллелграмма.

3) «Площадь треугольника равна его основанию, умноженному на высоту» — неверно, площадь треугольника равна половине произведения основания на высоту.

Читайте также:  Окружность на глобусе параллельные экватору это

Аналоги к заданию № 311851: 316323 316349 316375 Все

Какие из данных утверждений верны? Запишите их номера.

1) У равнобедренного треугольника есть ось симметрии.

2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.

3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.

Проверим каждое из утверждений.

1) «У равнобедренного треугольника есть ось симметрии» — верно, эта ось совпадает с биссектрисой, проведённой к основанию.

2) «Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат» — верно, т. к. среди всех параллелограммов только в квадрате диагонали равны и перпендикулярны.

3) «Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности» — неверно, т. к. для того, чтобы сказать пересекаются окружности или нет, нужно знать взаимное положение их центров.

Через точку O пересечения диагоналей параллелограмма ABCD проведена прямая, пересекающая стороны AB и CD в точках E и F соответственно. Докажите, что AE = CF.

Треугольники AOE и COF равны по стороне и двум прилежащим к ней углам: поскольку диагонали параллелограмма точкой пересечения делятся пополам, как вертикальные, как накрест лежащие углы при пересечении параллельных прямых AB и CD секущей AC. Из равенства треугольников следует равенство их сходственных сторон: AE = CF. Что и требовалось доказать.

Приведем другое решение.

Точка пересечения диагоналей является центром симметрии параллелограмма (Атанасян Л. С., Геометрия 7−9, п. 47). Поэтому треугольники OEA и OFC центрально симметричны относительно точки О и, следовательно, равны. Поэтому их стороны ЕА и CF равны. Что и требовалось доказать.

Источник

Окружность имеет бесконечно много центров симметрии 2 прямая не имеет осей симметрии 3 правильный

Вопрос по геометрии:

. Какие из сле­ду­ю­щих утвер­жде­ний верны? 1) Окруж­ность имеет бес­ко­неч­но много цен­тров сим­мет­рии.2) Пря­мая не имеет осей сим­мет­рии.3) Пра­виль­ный пя­ти­уголь­ник имеет пять осей сим­мет­рии.4) Квад­рат не имеет цен­тра сим­мет­рии.

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

3) Правильный пятиугольник имеет пять осей симметрии.
Верное утверждение,так как оси симметрии правильного пятиугольника проходят через каждую вершину и середину стороны ,лежащей напротив.

Неверные утверждения:
1-окружность имеет бес­ко­неч­но много осей сим­мет­рии ,но не центров,окружность имеет центр симметрии,лишь в том случае,когда симметрична сама себе,относительно центра как плоская фигура;
2-прямая имеет бесконечное число осей симметрии;
4-квадрат имеет центр симметрии-это точка пересечения его диагоналей.

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Источник

Поделиться с друзьями
Объясняем