Около любой трапеции можно описать окружность верно или нет

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия –

Отношение площадей этих треугольников есть .

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то

Площадь

или где – средняя линия

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Источник

Трапеция.

Трапеция — четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны трапеции называются её основаниями, а две другие — боковыми сторонами.

Трапеция называется равнобедренной, если её боковые стороны равны.

Читайте также:  Прямоугольное ограждение для душа

Трапеция называется прямоугольной, если у нее два угла прямые.

Основные свойства трапеции:

  1. Сумма углов при каждой боковой стороне трапеции равна 180°.
  2. Средняя линия трапеция параллельна её основаниям и равна их полусумме.
  3. В любой трапеции следующие точки лежат на одной прямой: точка пересечения продолжений боковых сторон, середины оснований и точка пересечения диагоналей.
  4. Треугольники, образованные отрезками диагоналей и основаниями трапеции, подобны.
  5. Треугольники, образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.
  6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.
  7. Если сумма углов, при любом основании трапеции, равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.
  8. Биссектриса любого угла трапеции отсекает от нее равнобедренный треугольник.
  9. Биссектрисы углов, при боковой стороне трапеции, перпендикулярны.
  10. Если в трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
  11. Отрезок, заключенный между боковых сторон трапеции, параллельный основаниям трапеции и проходящий через точку пересечения ее диагоналей — среднее гармоническое оснований трапеции.

Свойства равнобедренной трапеции:

  1. Диагонали равны.
  2. Углы при основании равны.
  3. Сумма противоположных углов равна 180°.
  4. Около равнобедренной трапеции можно описать окружность.
  5. Высота, опущенная из вершины тупого угла равнобедренной трапеции, делит большее основание трапеции на два отрезка, больший из которых равен полусумме оснований, а меньший — полуразности оснований.

Описанная трапеция:

  1. Если вокруг трапеции можно описать окружность, то трапеция равнобедренная.
  2. Радиус вписанной окружности равен среднему геометрическому длин отрезков, на которые радиус вписанной окружности делит боковую сторону, точкой касания.
  3. Радиус вписанной окружности равен половине высоты трапеции.

Вписанная трапеция:

  1. Трапецию можно вписать в окружность,если сумма длин оснований равна сумме длин боковых сторон.

Площадь трапеции:

  1. Формула площади трапеции через основания и высоту: S=0,5·(a+b)·h.
  2. Формула площади трапеции через диагонали и угол между ними: S=0,5·d1·d2·sinφ.

Источник

Около любой трапеции можно описать окружность верно или нет

Вопрос по геометрии:

какие из следующих утверждений верно ?
1- около любой трапеции можно описать окружность. 2- около любого правильного многоугольника можно описать окружность. 3- центр окружность , вписанной в четырёхугольник , является точка пересечения его диагоналей.

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Читайте также:  Трапеции дворников ваз какие
Ответы и объяснения 1

2- около любого правильного многоугольника можно описать окружность.
3- центр окружность , вписанной в четырёхугольник , является точка пересечения его диагоналей.

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Источник

Трапеция — определение, формулы и свойства

Перед тобой лучший гид по трапеции! Только то, что нужно. Без воды.

Основные определения, формулы и свойства.

Помни о своей цели!

Тебе нужно подготовиться к ЕГЭ по математике так, чтобы поступить в ВУЗ мечты!

Трапеция — коротко о главном

Что такое трапеция:

Трапеция – четырёхугольник, у которого две стороны параллельны (они называются основания), а две другие – нет (это боковые стороны).

Сумма углов при каждой боковой стороне трапеции равна 180°

\( \displaystyle \angle 1+\angle 2=180<>^\circ \) и \( \displaystyle \angle 3+\angle 4=180<>^\circ \)

Средняя линия трапеции:

Средняя линия трапеции (\( \displaystyle MN\)) – отрезок, соединяющий середины боковых сторон: \( \displaystyle AM=MB,\ \ CN=ND\).

Средняя линия параллельна основаниям: \( \displaystyle MN\parallel BC\parallel AD\).

Длина средней линии трапеции равна полусумме длин оснований: \( \displaystyle MN=\frac<2>\).

Диагонали трапеции:

Диагонали любой трапеции пересекаются в точке О.

Треугольники, образованные основаниями трапеции и отрезками диагоналей
(\( \displaystyle BOC\) и \( \displaystyle AOD\)) подобны по двум углам с коэффициентом подобия равным отношению оснований: \( \displaystyle k=\frac\).

Площади треугольников, образованных боковыми сторонами и отрезками диагоналей трапеции, равны: \( \displaystyle <_<\Delta AOB>>=<_<\Delta COD>>\).

Равнобедренная (равнобокая трапеция)

Равнобедренная (равнобокая) трапеция – это трапеция, у которой боковые стороны равны: \( \displaystyle AB=CD\).

Свойства равнобедренной трапеции:

Углы при основании равны: \( \displaystyle \angle A=\angle D,\text< >\angle B=\angle C\);

Сумма противолежащих углов равна \( \displaystyle 180<>^\circ \): \( \displaystyle \angle A+\angle C=\angle B+\angle D=180<>^\circ \).

Стороны и диагональ равнобокой трапеции связаны соотношением: \( \displaystyle A<^<2>>=B<^<2>>=AD\cdot BC+A<^<2>>\).

Если трапецию можно вписать в окружность…

Если трапецию можно вписать в окружность, то она – равнобокая.

Площадь трапеции

Площадь трапеции равна полусумме оснований, умноженной на высоту: \( \displaystyle <_>=\frac<2>\cdot h\).

Для справки: В нашем учебнике для подготовки к ЕГЭ по математике есть все темы планиметрии и стереометрии (да и алгебры тоже есть).

Что такое трапеция?

Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.

Параллельные стороны называются – основания, а непараллельные стороны называются боковые стороны.

Оказывается, трапеция (как и треугольник) бывает равнобедренная.

Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).

И тут возникает вопрос: а могут ли у трапеции быть равными ОСНОВАНИЯ?

А вот и нет. Тогда это получится не трапеция, а параллелограмм, потому что две стороны окажутся параллельны и равны (вспоминаем признаки параллелограмма)

Свойства трапеции

Итак, что ты должен знать о свойствах трапеции…

Сумма углов при каждой боковой стороне трапеции равна 180°. (у нас на рисунке \( \displaystyle \angle 1+\angle 2=180<>^\circ \) и \( \displaystyle \angle 3+\angle 4=180<>^\circ \))

Ну, конечно, просто потому, что основания – параллельны, а боковая сторона – секущая.

Вот и получается, что \( \displaystyle \angle 1\) и \( \displaystyle \angle 2\) – внутренние односторонние углы при параллельных \( \displaystyle AD\) и \( \displaystyle BC\) и секущей \( \displaystyle AB\).

Поэтому \( \displaystyle \angle 1+\angle 2=180<>^\circ \).

И точно так же \( \displaystyle \angle 3\) и \( \displaystyle \angle 4\) – внутренние односторонние углы при тех же параллельных \( \displaystyle AD\) и \( \displaystyle BC\), но секущая теперь – \( \displaystyle CD\).

Видишь: главное, что играет роль – это параллельность оснований. Давай разберем еще некоторые свойства трапеции.

Как у всякого четырехугольника, у трапеции есть диагонали. Их две – посмотри на рисунки:

Источник

Поделиться с друзьями
Объясняем