Общая хорда окружностей касающихся внешним образом

Президентский ФМЛ №239

Инструменты пользователя

Инструменты сайта

Содержание

Окружность

1. Окружность – это геометрическое место точек, равноудаленных от данной точки.

2. Геометрическое место точек, удаленных от заданной точки $O$ на заданное расстояние $R$, называют окружностью с центром в точке $O$ и радиусом $R$.

Обозначают такую окружность так: $\omega(O;R)$.

Касательные и хорды

Теорема

Если $d$ – это расстояние от точки $O$ до прямой $l$, а $\omega$ – окружность с центром в точке $O$ и радиусом $R$, тогда

Третий случай

В этом случае $OH>r$, поэтому для любой точки $M$ прямой $p$ $OM\geqslant OH>r$.

Следовательно, точка $M$ не лежит на окружности.

Определение

Определение

Касательная к кривой – это предельное положение секущей.

Теорема о характерном свойстве касательной

Доказательство

Докажем первый пункт теоремы.

Пусть $p$ – касательная к окружности с центром $O$, $A$ – точка касания.

Докажем, что $p\perp OA$.

Предположим, что это не так.

Тогда радиус $OA$ является наклонной к прямой $p$.

Так как перпендикуляр, проведенный из точки $O$ к прямой $p$, меньше наклонной $OA$, то расстояние от от точки $O$ до прямой $p$ меньше радиуса.

Следовательно, прямая $p$ и окружность имеют две общие точки.

Но это противоречит условию, так как $p$ – это касательная.

Таким образом $p\perp OA$.

Докажем второй пункт теоремы.

Из условия следует, что данный радиус является перпендикуляром, проведенным из центра окружности к данной прямой.

Поэтому расстояние от центра окружности до прямой равно радиусу, и, следовательно, прямая и окружность имеют только одну общую точку.

Но это и означает, что данная прямая является касательной к окружности.

Теорема

Доказательство

Рассмотрим окружность с центром в точке $O$, вписанную в угол $M$.

Пусть данная окружность касается сторон угла в точках $A$ и $B$.

Докажем, что $\angle AMO=\angle BMO$.

Действительно, треугольники $AMO$ и $BMO$ равны, по катету и гипотенузе ($OA=OB$, $OM$ – общая).

Тогда $\angle AMO=\angle BMO$ и $MA=MB$.

Кроме того, так как треугольник $\triangle MAB$ равнобедренный, а $MH$ – не только биссектриса угла $\angle AMB$, но и медиана и высота, то есть $AH=HB, AB\perp MO$.

Свойства хорд окружности

Доказательство

Докажем первый пункт теоремы.

Рассмотрим окружность с центром $O$, в которой хорда $AB$ пересекает диаметр $CD$ в точке $E$.

Читайте также:  Окружность головы к году составляет

Если $E$ – это середина $AB$, то $OE$ – это медиана равнобедренного треугольника $AOB$, а, следовательно, и $OE$ – высота.

Обратно, если $OE$ — высота, то и медиана.

Докажем второй пункт теоремы.

Рассмотрим окружность с центром $O$, в которой проведены хорды $AB$ и $CD$.

Пусть расстояния $OE$ и $OF$ до этих хорд равны.

Тогда треугольники $OAE, OEB, OFD$ и $OFC$ равны по катету и гипотенузе ($OA=OB=OD=OC$, так как это радиусы).

Тогда $AE=EB=DF=FC$, и, следовательно, $AB=2AE=2DF=CD$.

Докажем третий пункт теоремы.

Рассмотрим окружность с центром $O$, в которой проведены хорды $AB$ и $CD$.

Если $\angle AOB=\angle COD$, то $\triangle AOB=\triangle COD$ по первому признаку равенства ($CO=OB=OD=OA$, так как это радиусы), следовательно, $AB=CD$.

Обратно, если $AB=CD$, то $\triangle AOB=\triangle COD$ по третьему признаку равенства, следовательно, $\angle AOB=\angle COD$.

Источник

Общая хорда двух окружностей

Общая хорда двух пересекающихся окружностей перпендикулярна прямой, проходящей через центры этих окружностей.

Дано : окр. (O1; R) ∩ окр. (O2; r)=A, B.

Соединим центры окружностей с точками A и B. Обозначим точку пересечения прямой O1O2 с хордой AB как F.

Рассмотрим треугольники O1AO2 и O1BO2.

3) O1O2 — общая сторона.

Из равенства треугольников следует равенство соответствующих углов: ∠AO1F=BO1F, то есть O1F- биссектриса угла AO1B.

Треугольник AO1B — равнобедренный с основанием AB (O1A=O1B=R). Следовательно, биссектриса O1F является также его высотой и медианой. Таким образом,

Аналогично доказывается, что

По теореме о существовании и единственности прямой, перпендикулярной данной,через точку F можно провести только одну прямую, перпендикулярную данной прямой AB.

Следовательно, центры окружностей O1, O2 и точка F лежат на одной прямой O1O2, а общая хорда окружностей перпендикулярна этой прямой:

Источник

Отрезки и прямые, связанные с окружностью. Теорема о бабочке

Отрезки и прямые, связанные с окружностью
Свойства хорд и дуг окружности
Теоремы о длинах хорд, касательных и секущих
Доказательства теорем о длинах хорд, касательных и секущих
Теорема о бабочке

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

Фигура Рисунок Определение и свойства
Окружность
Круг
Радиус
Хорда
Диаметр
Касательная
Секущая
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Радиус

Отрезок, соединяющий центр окружности с любой точкой окружности

Хорда

Отрезок, соединяющий две любые точки окружности

Диаметр

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Касательная

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Секущая

Прямая, пересекающая окружность в двух точках

Свойства хорд и дуг окружности

Фигура Рисунок Свойство
Диаметр, перпендикулярный к хорде Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хорды Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хорды Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружности Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длины Большая из двух хорд расположена ближе к центру окружности.
Равные дуги У равных дуг равны и хорды.
Параллельные хорды Дуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хорды

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хорды

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружности

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длины

Большая из двух хорд расположена ближе к центру окружности.

Равные дуги

У равных дуг равны и хорды.

Параллельные хорды

Дуги, заключённые между параллельными хордами, равны.

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Фигура Рисунок Теорема
Пересекающиеся хорды
Касательные, проведённые к окружности из одной точки
Касательная и секущая, проведённые к окружности из одной точки
Секущие, проведённые из одной точки вне круга

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Пересекающиеся хорды
Касательные, проведённые к окружности из одной точки
Касательная и секущая, проведённые к окружности из одной точки
Секущие, проведённые из одной точки вне круга
Пересекающиеся хорды

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Касательные, проведённые к окружности из одной точки

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Секущие, проведённые из одной точки вне круга

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Тогда справедливо равенство

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Точка B – точка касания. В силу теоремы 2 справедливы равенства

откуда и вытекает требуемое утверждение.

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Воспользовавшись теоремой 1, получим

Воспользовавшись равенствами (1) и (2), получим

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

Источник

Читайте также:  Какие проекции называют прямоугольным
Поделиться с друзьями
Объясняем