- Президентский ФМЛ №239
- Инструменты пользователя
- Инструменты сайта
- Содержание
- Окружность
- Касательные и хорды
- Теорема
- Третий случай
- Определение
- Определение
- Теорема о характерном свойстве касательной
- Доказательство
- Докажем первый пункт теоремы.
- Докажем второй пункт теоремы.
- Теорема
- Доказательство
- Свойства хорд окружности
- Доказательство
- Докажем первый пункт теоремы.
- Докажем второй пункт теоремы.
- Докажем третий пункт теоремы.
- Общая хорда двух окружностей
- Отрезки и прямые, связанные с окружностью. Теорема о бабочке
- Отрезки и прямые, связанные с окружностью
- Свойства хорд и дуг окружности
- Теоремы о длинах хорд, касательных и секущих
- Доказательства теорем о длинах хорд, касательных и секущих
- Теорема о бабочке
Президентский ФМЛ №239
Инструменты пользователя
Инструменты сайта
Содержание
Окружность
1. Окружность – это геометрическое место точек, равноудаленных от данной точки.
2. Геометрическое место точек, удаленных от заданной точки $O$ на заданное расстояние $R$, называют окружностью с центром в точке $O$ и радиусом $R$.
Обозначают такую окружность так: $\omega(O;R)$.
Касательные и хорды
Теорема
Если $d$ – это расстояние от точки $O$ до прямой $l$, а $\omega$ – окружность с центром в точке $O$ и радиусом $R$, тогда
Третий случай
В этом случае $OH>r$, поэтому для любой точки $M$ прямой $p$ $OM\geqslant OH>r$.
Следовательно, точка $M$ не лежит на окружности.
Определение
Определение
Касательная к кривой – это предельное положение секущей.
Теорема о характерном свойстве касательной
Доказательство
Докажем первый пункт теоремы.
Пусть $p$ – касательная к окружности с центром $O$, $A$ – точка касания.
Докажем, что $p\perp OA$.
Предположим, что это не так.
Тогда радиус $OA$ является наклонной к прямой $p$.
Так как перпендикуляр, проведенный из точки $O$ к прямой $p$, меньше наклонной $OA$, то расстояние от от точки $O$ до прямой $p$ меньше радиуса.
Следовательно, прямая $p$ и окружность имеют две общие точки.
Но это противоречит условию, так как $p$ – это касательная.
Таким образом $p\perp OA$.
Докажем второй пункт теоремы.
Из условия следует, что данный радиус является перпендикуляром, проведенным из центра окружности к данной прямой.
Поэтому расстояние от центра окружности до прямой равно радиусу, и, следовательно, прямая и окружность имеют только одну общую точку.
Но это и означает, что данная прямая является касательной к окружности.
Теорема
Доказательство
Рассмотрим окружность с центром в точке $O$, вписанную в угол $M$.
Пусть данная окружность касается сторон угла в точках $A$ и $B$.
Докажем, что $\angle AMO=\angle BMO$.
Действительно, треугольники $AMO$ и $BMO$ равны, по катету и гипотенузе ($OA=OB$, $OM$ – общая).
Тогда $\angle AMO=\angle BMO$ и $MA=MB$.
Кроме того, так как треугольник $\triangle MAB$ равнобедренный, а $MH$ – не только биссектриса угла $\angle AMB$, но и медиана и высота, то есть $AH=HB, AB\perp MO$.
Свойства хорд окружности
Доказательство
Докажем первый пункт теоремы.
Рассмотрим окружность с центром $O$, в которой хорда $AB$ пересекает диаметр $CD$ в точке $E$.
Если $E$ – это середина $AB$, то $OE$ – это медиана равнобедренного треугольника $AOB$, а, следовательно, и $OE$ – высота.
Обратно, если $OE$ — высота, то и медиана.
Докажем второй пункт теоремы.
Рассмотрим окружность с центром $O$, в которой проведены хорды $AB$ и $CD$.
Пусть расстояния $OE$ и $OF$ до этих хорд равны.
Тогда треугольники $OAE, OEB, OFD$ и $OFC$ равны по катету и гипотенузе ($OA=OB=OD=OC$, так как это радиусы).
Тогда $AE=EB=DF=FC$, и, следовательно, $AB=2AE=2DF=CD$.
Докажем третий пункт теоремы.
Рассмотрим окружность с центром $O$, в которой проведены хорды $AB$ и $CD$.
Если $\angle AOB=\angle COD$, то $\triangle AOB=\triangle COD$ по первому признаку равенства ($CO=OB=OD=OA$, так как это радиусы), следовательно, $AB=CD$.
Обратно, если $AB=CD$, то $\triangle AOB=\triangle COD$ по третьему признаку равенства, следовательно, $\angle AOB=\angle COD$.
Источник
Общая хорда двух окружностей
Общая хорда двух пересекающихся окружностей перпендикулярна прямой, проходящей через центры этих окружностей.
Дано : окр. (O1; R) ∩ окр. (O2; r)=A, B.
Соединим центры окружностей с точками A и B. Обозначим точку пересечения прямой O1O2 с хордой AB как F.
Рассмотрим треугольники O1AO2 и O1BO2.
3) O1O2 — общая сторона.
Из равенства треугольников следует равенство соответствующих углов: ∠AO1F=BO1F, то есть O1F- биссектриса угла AO1B.
Треугольник AO1B — равнобедренный с основанием AB (O1A=O1B=R). Следовательно, биссектриса O1F является также его высотой и медианой. Таким образом,
Аналогично доказывается, что
По теореме о существовании и единственности прямой, перпендикулярной данной,через точку F можно провести только одну прямую, перпендикулярную данной прямой AB.
Следовательно, центры окружностей O1, O2 и точка F лежат на одной прямой O1O2, а общая хорда окружностей перпендикулярна этой прямой:
Источник
Отрезки и прямые, связанные с окружностью. Теорема о бабочке
Отрезки и прямые, связанные с окружностью
Фигура | Рисунок | Определение и свойства | ||||||||||||||||||||||||||
Окружность | ||||||||||||||||||||||||||||
Круг | ||||||||||||||||||||||||||||
Радиус | ||||||||||||||||||||||||||||
Хорда | ||||||||||||||||||||||||||||
Диаметр | ||||||||||||||||||||||||||||
Касательная | ||||||||||||||||||||||||||||
Секущая |
Окружность |
Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности
Конечная часть плоскости, ограниченная окружностью
Отрезок, соединяющий центр окружности с любой точкой окружности
Отрезок, соединяющий две любые точки окружности
Хорда, проходящая через центр окружности.
Диаметр является самой длинной хордой окружности
Прямая, имеющая с окружностью только одну общую точку.
Касательная перпендикулярна к радиусу окружности, проведённому в точку касания
Прямая, пересекающая окружность в двух точках
Свойства хорд и дуг окружности
Фигура | Рисунок | Свойство |
Диаметр, перпендикулярный к хорде | Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам. | |
Диаметр, проходящий через середину хорды | Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам. | |
Равные хорды | Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности. | |
Хорды, равноудалённые от центра окружности | Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны. | |
Две хорды разной длины | Большая из двух хорд расположена ближе к центру окружности. | |
Равные дуги | У равных дуг равны и хорды. | |
Параллельные хорды | Дуги, заключённые между параллельными хордами, равны. |
Диаметр, перпендикулярный к хорде |
Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Большая из двух хорд расположена ближе к центру окружности.
У равных дуг равны и хорды.
Дуги, заключённые между параллельными хордами, равны.
Теоремы о длинах хорд, касательных и секущих
Фигура | Рисунок | Теорема | ||||||||||||||||
Пересекающиеся хорды | ||||||||||||||||||
Касательные, проведённые к окружности из одной точки | ||||||||||||||||||
Касательная и секущая, проведённые к окружности из одной точки | ||||||||||||||||||
Секущие, проведённые из одной точки вне круга |
Пересекающиеся хорды | ||
Касательные, проведённые к окружности из одной точки | ||
Касательная и секущая, проведённые к окружности из одной точки | ||
Секущие, проведённые из одной точки вне круга | ||
Пересекающиеся хорды |
Произведения длин отрезков, на которые разбита каждая из хорд, равны:
Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.
Доказательства теорем о длинах хорд, касательных и секущих
Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).
Тогда справедливо равенство
Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).
Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство
Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство
откуда и вытекает требуемое утверждение.
Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).
Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство
Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).
Точка B – точка касания. В силу теоремы 2 справедливы равенства
откуда и вытекает требуемое утверждение.
Теорема о бабочке
Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.
Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:
Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим
Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим
Воспользовавшись теоремой 1, получим
Воспользовавшись равенствами (1) и (2), получим
Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство
откуда вытекает равенство
что и завершает доказательство теоремы о бабочке.
Источник