Нахождение углов трапеции равнобедренной трапеции

Углы равнобедренной трапеции

Углы равнобедренной трапеции. Здравствуйте! В этой статье речь пойдёт о решении задач с трапецией. Данная группа заданий входит в состав экзамена, задачки простые. Будем вычислять углы трапеции, основания и высоты. Решение ряда задач сводится к решению прямоугольного треугольника, как говориться: куда мы без теоремы Пифагора, синуса и косинуса ?

Работать будем с равнобедренной трапецией. У неё равны боковые стороны и углы при основаниях. О трапеции есть статья на блоге, посмотрите.

Отметим небольшой и важный нюанс, который в процессе решения самих заданий подробно расписывать не будем. Посмотрите, если у нас дано два основания, то большее основание высотами, опущенными к нему, разбивается на три отрезка – один равен меньшему основанию (это противолежащие стороны прямоугольника), два других равны друг другу (это катеты равных прямоугольных треугольников):

Простой пример: дано два основания равнобедренной трапеции 25 и 65. Большее основание разбивается на отрезки следующим образом:

*И ещё! В задачах не введены буквенные обозначения. Это сделано умышленно, чтобы не перегружать решение алгебраическими изысками. Согласен, что это математически неграмотно, но цель донести суть. А обозначения вершин и прочих элементов вы всегда можете сделать сами и записать математически корректное решение.

27439. Основания равнобедренной трапеции равны 51 и 65. Боковые стороны равны 25. Найдите синус острого угла трапеции.

Для того чтобы найти угол необходимо построить высоты. На эскизе обозначим данные в условии величины. Нижнее основание равно 65, высотами оно разбивается на отрезки 7, 51 и 7:

В прямоугольном треугольнике нам известна гипотенуза и катет, можем найти второй катет (высоту трапеции) и далее уже вычислить синус угла.

По теореме Пифагора указанный катет равен:

27440. Основания равнобедренной трапеции равны 43 и 73. Косинус острого угла трапеции равен 5/7. Найдите боковую сторону.

Построим высоты и отметим данные в условии величины, нижнее основание разбивается на отрезки 15, 43 и 15:

27441. Большее основание равнобедренной трапеции равно 34. Боковая сторона равна 14. Синус острого угла равен (2√10)/7. Найдите меньшее основание.

Читайте также:  Abcd трапеция угол acd 90

Построим высоты. Для того чтобы найти меньшее основание нам необходимо найти чему равен отрезок являющийся катетом в прямоугольном треугольнике (обозначен синим):

Можем вычислить высоту трапеции, а затем найти катет:

По теореме Пифагора вычисляем катет:

Таким образом, меньшее основание равно:

27442. Основания равнобедренной трапеции равны 7 и 51. Тангенс острого угла равен 5/11. Найдите высоту трапеции.

Построим высоты и отметим данные в условии величины. Нижнее основание разбивается на отрезки:

Что делать? Выражаем тангенс известного нам угла при основании в прямоугольном треугольнике:

27443. Меньшее основание равнобедренной трапеции равно 23. Высота трапеции равна 39. Тангенс острого угла равен 13/8. Найдите большее основание.

Строим высоты и вычисляем чему равен катет:

Таким образом большее основание будет равно:

27444. Основания равнобедренной трапеции равны 17 и 87. Высота трапеции равна 14. Найдите тангенс острого угла.

Строим высоты и отмечаем известные величины на эскизе. Нижнее основание разбивается на отрезки 35, 17, 35:

По определению тангенса:

77152. Основания равнобедренной трапеции равны 6 и 12. Синус острого угла трапеции равен 0,8. Найдите боковую сторону.

Построим эскиз, построим высоты и отметим известные величины, большее основание разбивается на отрезки 3, 6 и 3:

Выразим гипотенузу обозначенную как х через косинус:

Из основного тригонометрического тождества найдём cosα

27818. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 50 0 ? Ответ дайте в градусах.

Из курса геометрии нам известно, что если имеем две параллельные прямые и секущую, что сумма внутренних односторонних углов равна 180 0 . В нашем случае это

C условии сказано, что разность противолежащих углов равна 50 0 , то есть

Так как у равнобедренной трапеции углы при основании равны, то есть угол А равен углу В, то можем записать

Имеем два уравнения с двумя неизвестными, можем решить систему:

*Конечно, эту задачу можно было легко решить просто перебирая пары углов )

27833. В равнобедренной трапеции большее основание равно 25, боковая сторона равна 10, угол между ними 60 0 . Найдите меньшее основание.

Построим высоты DE и CF:

Меньшее основание равно отрезку EF, так как DC и EF это противолежащие стороны прямоугольника. Отрезок EF мы можем найти если вычислим АЕ. Выразим этот катет прямоугольного треугольника ADE через функцию косинуса:

Так как AE=FB=5, то EF=25–5–5=15. Следовательно и DC=15.

27837. Основания равнобедренной трапеции равны 15 и 9, один из углов равен 45 0 . Найдите высоту трапеции.

Читайте также:  Если диагонали параллелограмма перпендикулярны то этот параллелограмм является ромбом верно или нет

Из точек D и C опустим две высоты:

Как уже сказано выше они разбивают большее основание на три отрезка: один равен меньшему основанию, два других равны друг другу.

В данном случае они равны 3, 9 и 3 (в сумме 15). Кроме того, отметим что высотами отсекаются прямоугольные треугольники, причём они являются равнобедренными, так как углы при основании равны по 45 0 . Отсюда следует, что высота трапеции будет равна 3.

Источник

Равнобедренная трапеция

Свойства

В равнобокой трапеции боковые стороны и углы при основаниях равны между собой, следовательно, все формулы значительно упрощаются. Периметр такой трапеции равен сумме двух оснований и удвоенной боковой стороны. P=2a+b+d

Высота равнобокой трапеции является катетом в прямоугольном треугольнике, где гипотенуза – боковая сторона трапеции, а второй катет – половина разности большего и меньшего оснований. Вычислить высоту в равнобокой трапеции можно с помощью теоремы Пифагора в этом треугольнике. (рис.104.1) h=√(a^2-(c-b)^2/4)

Средняя линия трапеции не связана с боковыми сторонами и представляет собой сумму большего и меньшего основании, разделенную на два. m=(b+c)/2

Площадь равнобокой трапеции вычисляется также как и обычной – произведением высоты на среднюю линию. S=hm

Найти диагонали в равнобокой трапеции проще, так как высоты, входящие с ними в прямоугольные треугольники, делят большее основание на три части, одна из которых равна меньшему основанию, а две другие равны между собой. Сами диагонали также равны друг другу и вычислить их можно по формулам, приведенным из теоремы Пифагора. (рис.104.2) d=√(h^2+((b+c)/2)^2 )=√(a^2-(c-b)^2/4+(b+c)^2/4)=√((2a^2-b^2-c^2)/2)

Внутри равнобокой окружности можно вписать окружность, радиус которой будет равен квадратному корню из произведения оснований, деленному на два, если сумма боковых сторон равна сумме оснований (что представляет собой половину высоты) (рис.104.3) r=√bc/2

Радиус окружности, описанной вокруг равнобокой трапеции, ищется как радиус описанной окружности треугольника, образованного ее диагональю со сторонами. (рис.104.4) R=abd/√((a+b+d)(a+b)(a+d)(b+d))

Источник

Равнобедренная трапеция. Формулы, признаки и свойства равнобедренной трапеции

Рис.1

Признаки равнобедренной трапеции

∠ABC = ∠BCD и ∠BAD = ∠ADC

∠ABD = ∠ACD, ∠DBC = ∠ACB, ∠CAD = ∠ADB, ∠BAC = ∠BDC

∠ABC + ∠ADC = 180° и ∠BAD + ∠BCD = 180°

Основные свойства равнобедренной трапеции

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD

9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) — равен полуразности оснований:

AP = BC + AD
2
PD = AD — BC
2

Стороны равнобедренной трапеции

Формулы длин сторон равнобедренной трапеции:

a = b + 2 h ctg α = b + 2 c cos α

Читайте также:  Если построить на окружности две пересекающиеся хорды то произведение отрезков

b = a — 2 h ctg α = a — 2 c cos α

c = h = a — b
sin α 2 cos α

2. Формула длины сторон трапеции через диагонали и другие стороны:

a = d 1 2 — c 2 b = d 1 2 — c 2 c = √ d 1 2 — ab
b a

3. Формулы длины основ через площадь, высоту и другую основу:

a = 2S — b b = 2S — a
h h

4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:

с = S
m sin α

5. Формулы длины боковой стороны через площадь, основания и угол при основе:

с = 2S
( a + b ) sin α

Средняя линия равнобедренной трапеции

Формулы длины средней линии равнобедренной трапеции:

m = a — h ctg α = b + h ctg α = a — √ c 2 — h 2 = b + √ c 2 — h 2

2. Формула средней линии трапеции через площадь и сторону:

m = S
c sin α

Высота равнобедренной трапеции

Формулы определения длины высоты равнобедренной трапеции:

1. Формула высоты через стороны:

h = 1 √ 4 c 2 — ( a — b ) 2
2

2. Формула высоты через стороны и угол прилегающий к основе:

h = a — b tg β = c sin β
2

Диагонали равнобедренной трапеции

Формулы длины диагоналей равнобедренной трапеции:

d 1 = √ a 2 + c 2 — 2 ac cos α

d 1 = √ b 2 + c 2 — 2 bc cos β

4. Формула длины диагонали через высоту и основания:

d 1 = 1 √ 4 h 2 + ( a + b ) 2
2

Площадь равнобедренной трапеции

Формулы площади равнобедренной трапеции:

1. Формула площади через стороны:

S = a + b √ 4 c 2 — ( a — b ) 2
4

2. Формула площади через стороны и угол:

S = ( b + c cos α ) c sin α = ( a — c cos α ) c sin α

3. Формула площади через радиус вписанной окружности и угол между основой и боковой стороной:

S = 4 r 2 = 4 r 2
sin α sin β

4. Формула площади через основания и угол между основой и боковой стороной:

S = ab = ab
sin α sin β

5. Формула площади ранобедренной трапеции в которую можно вписать окружность:

S = ( a + b ) · r = √ ab ·c = √ ab ·m

6. Формула площади через диагонали и угол между ними:

S = d 1 2 · sin γ = d 1 2 · sin δ
2 2

7. Формула площади через среднюю линию, боковую сторону и угол при основании:

S = mc sin α = mc sin β

8. Формула площади через основания и высоту:

S = a + b · h
2

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R = a·c·d 1
4√ p ( p — a )( p — c )( p — d 1)

где

p = a + c + d 1
2

a — большее основание

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Поделиться с друзьями
Объясняем