Нахождение основания равнобедренного треугольника по высоте

Содержание
  1. Как посчитать стороны равнобедренного треугольника
  2. Онлайн калькулятор
  3. Как посчитать сторону a равнобедренного треугольника
  4. Если известна сторона b и угол α
  5. Если известна сторона b и угол β
  6. Если известна сторона b и высота h
  7. Как посчитать сторону b (основание) равнобедренного треугольника
  8. Если известна сторона a и угол α
  9. Если известна сторона a и угол β
  10. Если известна сторона a и высота h
  11. Как посчитать высоту равнобедренного треугольника
  12. Онлайн калькулятор
  13. Если известны длина стороны а и основания b
  14. Формула
  15. Пример
  16. Если известны длина стороны а и угол α
  17. Формула
  18. Пример
  19. Если известны длина стороны а и угол β
  20. Формула
  21. Пример
  22. Если известны длина стороны b и угол α
  23. Формула
  24. Пример
  25. Если известны длина стороны b и угол β
  26. Высота и угол «α» равнобедренного треугольника
  27. Свойства
  28. Высота равнобедренного треугольника
  29. Высота и сторона «A» равнобедренного треугольника
  30. Свойства

Как посчитать стороны равнобедренного треугольника

Онлайн калькулятор

Чтобы вычислить длины сторон равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):

  • длину основания (b) и угол α
  • длину основания (b) и угол β
  • длину основания (b) и высоту (h)
  • длину двух равных сторон (a) и угол α
  • длину двух равных сторон (a) и угол β
  • длину двух равных сторон (a) и высоту (h)

Введите их в соответствующие поля и получите результат.

Как посчитать сторону a равнобедренного треугольника

Если известна сторона b и угол α

Чему равна сторона a равнобедренного треугольника если длина основания , а угол

Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и угол α?

Формула
Пример

Если сторона b = 10 см, а ∠α = 30°, то:

Если известна сторона b и угол β

Чему равна сторона a равнобедренного треугольника если длина основания , а угол

Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и угол β?

Формула
Пример

Если сторона b = 10 см, а ∠β = 30°, то:

a = 10 /2⋅sin 15 = 10/(2⋅0.2588) = 19.31см

Если известна сторона b и высота h

Чему равна сторона a равнобедренного треугольника если длина основания , а высота

Чему равна сторона a у равнобедренного треугольника если известны длина основания (сторона b) и высота h?

Формула
Пример

Если сторона b = 10 см, а высота h = 20 см, то:

a = √ 1 /10 2 + 20 2 = √ 0.01+400 = 20.61см

Как посчитать сторону b (основание) равнобедренного треугольника

Если известна сторона a и угол α

Чему равна сторона b равнобедренного треугольника если длина стороны , а угол

Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и угол α?

Формула
Пример

Если сторона a = 10 см, а ∠α = 30°, то:

b = 2⋅10⋅cos 30° = 2⋅10⋅0.8660 = 17.32см

Если известна сторона a и угол β

Чему равна сторона b равнобедренного треугольника если длина стороны , а угол

Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и угол β?

Формула
Пример

Если сторона a = 10 см, а ∠β = 40°, то:

Если известна сторона a и высота h

Чему равна сторона b равнобедренного треугольника если длина стороны , а высота

Чему равна сторона b у равнобедренного треугольника если известны длина стороны a и высота h?

Формула

b = 2⋅ √ a 2 — h 2 , h

Пример

Если сторона a = 10 см, а высота h = 5 см, то:

Читайте также:  Если на окружности отметить 2 точки то они делят окружность на 2

Источник

Как посчитать высоту равнобедренного треугольника

Онлайн калькулятор

Чтобы вычислить высоту равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):

  • длину двух равных сторон (a) и длину основания (b)
  • длину двух равных сторон (a) и угол α
  • длину двух равных сторон (a) и угол β
  • длину основания (b) и угол α
  • длину основания (b) и угол β

Введите их в соответствующие поля и получите результат.

Если известны длина стороны а и основания b

Чему равна высота h равнобедренного треугольника если длина сторон , а длина основания

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и длина основания b?

Формула

h = √ a 2 — ( b /2) 2

Пример

Если сторона a = 10 см, а сторона b = 5 см, то:

h = √ 10 2 — ( 5 /2) 2 = √ 100 — 6.25 ≈ 9.68 см

Если известны длина стороны а и угол α

Чему равна высота h равнобедренного треугольника если длина сторон , а угол

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол α?

Формула

Пример

Если сторона a = 5 см, а ∠α = 45°, то:

h = 5⋅sin 45 ≈ 3,53 см

Если известны длина стороны а и угол β

Чему равна высота h равнобедренного треугольника если длина сторон , а угол

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол β?

Формула

Пример

Если сторона a = 5 см, а ∠β = 30°, то:

Если известны длина стороны b и угол α

Чему равна высота h равнобедренного треугольника если длина основания , а угол

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол α?

Формула

Пример

Если сторона b = 20 см, а ∠α = 35°, то:

Если известны длина стороны b и угол β

Чему равна высота h равнобедренного треугольника если длина основания , а угол

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол β?

Источник

Высота и угол «α» равнобедренного треугольника

Свойства

Высота равнобедренного треугольника, которая лежит под прямым углом к основанию, создает внутри еще два одинаковых прямоугольных треугольника, являясь катетом в каждом из них. Второй катет такого треугольника представляет собой половину основания, так как эта высота является одновременно медианой и биссектрисой, а гипотенузой будет боковая сторона равнобедренного треугольника. Соответственно, зная высоту и угол α при основании, через прямоугольный треугольник можно узнать стороны равнобедренного треугольника. (рис.88.2) a=h/sin⁡α b=2h/tan⁡α

Поскольку сумма всех углов в треугольнике равна 180 градусам, следовательно, угол при вершине будет равен разности 180 градусов и двух углов при основании. β=180°-2α

Периметр равнобедренного треугольника через высоту и угол α равен сумме двух отношений высоты к синусу угла и двух отношений высоты к тангенсу. Площадь, в свою очередь, преобразовывается в квадрат высоты, деленный на тангенс. P=2a+b=2h/sin⁡α +2h/tan⁡α S=hb/2=h^2/tan⁡α

Чтобы найти высоту, опущенную на боковую сторону равнобедренного треугольника (любую, так как они одинаковы), можно воспользоваться готовой формулой через стороны треугольника, заменив их на тригонометрические отношения и упростив выражение. Аналогично вычисляются медианы и биссектрисы через высоту. m_a=√(a^2+2b^2 )/2=√((h/sin⁡α )^2+2(2h/tan⁡α )^2 )/2=(h√(1/cos⁡α +8))/(2 tan⁡α ) h_a=(b√((4a^2-b^2)))/2a=(b√((4(h/sin⁡α )^2-(2h/tan⁡α )^2)))/(2 h/sin⁡α )=b sin^2⁡α l_a=(b√(a(2a+b) ))/(a+b)=(2h/tan⁡α √(h/sin⁡α (2 h/sin⁡α +2h/tan⁡α )))/(h/sin⁡α +2h/tan⁡α )=(2h√(2+2/cos⁡α ))/(tan⁡α+2 sin⁡α )

Читайте также:  Как тянуть мышцы трапеции

Чтобы вычислить среднюю линию, необходимо разделить на два ту сторону треугольника, которая ей параллельна. Поскольку ни одна из сторон не известна, то средняя линия, параллельная основанию, равна высоте, деленной на тангенс угла α, а средняя линия, параллельная боковой стороне равна высоте, деленной на два синуса угла α. (рис.88.5) M_b=b/2=h/tan⁡α M_a=a/2=h/(2 sin⁡α )

Чтобы вычислить радиус вписанной в равнобедренный треугольник окружности, нужно подставить вместо сторон a и b в формулу отношения высоты и тангенса или синуса соответственно, а затем упростить выражение (рис.88.6) r=b/2 √((a-2b)/(a+2b))=h/tan⁡α √((h/sin⁡α -2 2h/tan⁡α )/(h/sin⁡α +2 2h/tan⁡α ))=h/tan⁡α √((1-4 cos⁡α)/(1+4 cos⁡α ))

Радиус окружности, описанной вокруг равнобедренного треугольника также зависит от обеих сторон – основания и боковой стороны, поэтому его формула видоизменяется аналогично радиусу вписанной окружности. (рис.88.7) R=a^2/√(4a^2-b^2 )=(h/sin⁡α )^2/√(4(h/sin⁡α )^2-(2h/tan⁡α )^2 )=h/(2 sin^2⁡α )

Источник

Высота равнобедренного треугольника

Равнобедренным треугольником называется такой треугольник, у которого две из трех сторон равны между собой. Равные стороны считаются боковыми сторонами а, а третья сторона в называется основанием равнобедренного треугольника.

Соответственно, в таком треугольнике можно провести три высоты, две из которых будут равны между собой, аналогично сторонам — это высоты, опущенные на боковую сторону треугольника а, а третья высота опускается на основание. Высота треугольника проводится из угла треугольника к противолежащей стороне под прямым углом. Большинство задач с высотой треугольника решаются через прямоугольные треугольники, которые она образует.

Рассмотрим каждый случай по отдельности.

Высота равнобедренного треугольника, опущенная на основание, обладает рядом индивидуальных свойств, присущих только ей и не распространяющихся на другие высоты в таком треугольнике. В частности, высота, проведенная к основанию равнобедренного треугольника, совпадает с медианой и биссектрисой, проведенным к основанию, следовательно, она не только образует прямой угол с основанием, но и делит его на две равные части, как медиана, и аналогично делит угол пополам, как биссектриса. В итоге, высота является своеобразной осью симметрии треугольника и разделяет его на два конгруэнтных прямоугольных треугольника. В таком треугольнике высота является катетом, и чтобы найти ее длину необходимо соотнести стороны равнобедренного треугольника со сторонами прямоугольного. Боковая сторона равнобедренного треугольника становится гипотенузой, а чтобы определить второй катет, основание равнобедренного треугольника нужно разделить пополам, по свойству медианы.

Длина высоты равнобедренного треугольника равна по теореме Пифагора квадратному корню из суммы квадрата боковой стороны равнобедренного треугольника и четверти квадрата основания равнобедренного треугольника:

Второй случай, когда условиями задачи нужно найти высоту, опущенную на боковую сторону равнобедренного треугольника, раскрывается проще всего через площадь треугольника.

Площадь любого треугольника можно найти несколькими способами — например, через три стороны треугольника по формуле Герона, или через высоту, умножив ее на половину стороны, на которую она опущена. И тем, и другим способом получаются одинаковые значения площади, следовательно обе эти формулы можно друг к другу приравнять и отсюда вывести окончательную формулу высоты, опущенную на боковую сторону равнобедренного треугольника.

Читайте также:  Какие фигуры являются гранями прямоугольного параллелепипеда

Формула Герона для равнобедренного треугольника будет иметь несколько упрощенный вид за счет того, что значения боковых сторон повторяются:

Площадь равнобедренного треугольника через высоту, опущенную к боковой стороне

Эту же формулу можно применять для нахождения любой высоты в равнобедренном треугольнике, если поменять в формуле соответствующие стороны местами.

Формула высоты равнобедренного треугольника через боковую сторону и угол при основании α: h=a sin⁡α

Формула через боковую сторону и угол напротив основания β:

Формула через основание и угол при нем α:

через основание и угол противолежащий ему β:

Источник

Высота и сторона «A» равнобедренного треугольника

Свойства

Так как высота равнобедренного треугольника, опущенная на основание, является одновременно и биссектрисой и медианой, следовательно, она делит основание и угол при вершине на две равные части, образуя прямоугольный треугольник со сторонами a и b/2. Из теоремы Пифагора в таком треугольнике можно найти само основание, а затем рассчитать все остальные возможные данные. (рис.88.2) h^2+(b/2)^2=a^2 b=√(a^2-h^2 )/2

Чтобы вычислить периметр равнобедренного треугольника, надо к двум боковым сторонам прибавить основание или приведенный выше радикал через высоту. P=2a+b=2a+√(a^2-h^2 )/2

Площадь равнобедренного треугольника через высоту и основание по определению вычисляется как половина их произведения. Заменив основание на соответствующее ему выражение, получаем площадь через высоту и боковую сторону равнобедренного треугольника. S=hb/2=(h√(a^2-h^2 ))/4

В равнобедренном треугольнике равны не только боковые стороны, но и углы при основании, а так как в сумме они дают всегда 180 градусов, то любой из углов можно найти, зная другой. Первый угол вычисляется по теореме косинусов, приведенной для равных боковых сторон, а второй можно найти через разность от 180. (рис.88.1) cos⁡α=(b^2+c^2-a^2)/2bc=(b^2+a^2-a^2)/2ba=b^2/2ba=b/2a cos⁡β=(a^2+a^2-b^2)/(2a^2 )=(2a^2-b^2)/(2a^2 ) α=(180°-β)/2 β=180°-2α

Центральные медиана и биссектриса, опущенные на основание совпадают с высотой, а боковые медианы, высоты и биссектрисы можно найти по следующим формулам для равнобедренных треугольников. Чтобы вычислить их через высоту и боковую сторону, нужно заменить основание на эквивалентное ему выражение. (рис. 88.3) m_a=√(2a^2+2b^2-a^2 )/2=√(a^2+2b^2 )/2

Высота, опущенная на боковую сторону, через высоту, опущенную на основание и боковую сторону равнобедренного треугольника. (рис.88.8) h_a=(b√((4a^2-b^2)))/2a=(√(a^2-h^2 ) √((4a^2-a^2+h^2)))/2a=√((a^2-h^2)(3a^2+h^2))/2

Биссектрисы, направленные в боковые стороны, также могут быть выражены через боковую сторону и центральную высоту треугольника . (рис. 88.4) l_a=√(ab(2a+b)(a+b-a) )/(a+b)=√(a(a^2-h^2)(2a+√(a^2-h^2 )) )/(a+√(a^2-h^2 ))

Средняя линия проводится параллельно любой стороне треугольника, соединяя середины боковых в ее отношении сторон. Таким образом, она всегда оказывается равна половине параллельной ей стороны. Вместо неизвестного основания в формулу можно подставить используемый радикал, чтобы найти среднюю линию через высоту и боковую сторону равнобедренного треугольника(рис. 88.5) M_b=b/2=√(a^2-h^2 )/2 M_a=a/2

Радиус окружности, вписанной в равнобедренный треугольник, начинается от точки на пересечении биссектрис и уходит перпендикулярно в любую из сторон. Чтобы его найти через высоту и боковую сторону треугольника, надо заменить основание в формуле на радикал. (рис. 88.6) r=1/2 √(((a^2-h^2)(2a-√(a^2-h^2 )))/(2a+√(a^2-h^2 )))

Радиус окружности, описанной вокруг равнобедренного треугольника, также выводится из общей формулы путем подстановки радикала через высоту и боковую сторону вместо основания. (рис. 88.7) R=a^2/√(3a^2-h^2 )

Источник

Поделиться с друзьями
Объясняем