Нахождение координаты центра описанной окружности

Уравнение описанной окружности

Как составить уравнение описанной около треугольника окружности по координатам его вершин? Как найти координаты центра описанной окружности? Как найти радиус описанной окружности, зная координаты вершин треугольника?

Решение всех этих задач сводится к одной — написать уравнение окружности, проходящей через три данные точки. Для этого достаточно подставить координаты точек (вершин треугольника) в уравнение окружности. Получим систему из трёх уравнений с тремя неизвестными: координатами центра и радиусом окружности.

Составить уравнение описанной окружности для треугольника с вершинами в точках A(2;1), B(6;3), C(9;2).

Подставив координаты вершин треугольника в уравнение окружности

получим систему уравнений

Вычтем из первого уравнения системы второе:

Теперь из второго уравнения системы вычтем третье:

Приравняем правые части равенств b=-2a+10 и b=3a-20:

Подставим в первое уравнение системы a=6 и b=-2:

a и b — координаты центра окружности, R — её радиус. Таким образом, точка (6;-2) — центр описанной около треугольника ABC окружности, радиус R=5, а уравнение описанной окружности

Для решения аналогичной задачи для четырёхугольника либо многоугольника достаточно знать координаты трёх его вершин.

Источник

Описанная окружность (ЕГЭ 2022)

Первый вопрос, который может возникнуть: описанная – вокруг чего?

Ну, вообще-то иногда бывает и вокруг чего угодно, а мы будем рассуждать об окружности, описанной вокруг (иногда ещё говорят «около») треугольника.

Что же это такое?

Описанная окружность — коротко о главном

Определение

Окружность, описанная около треугольника – это окружность, которая проходит через все три вершины этого треугольника.

Центр описанной окружности

Вокруг всякого треугольника можно описать окружность, при том единственным образом.

Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.

Радиус описанной окружности

Обрати внимание: теорема синусов сообщает, что для того чтобы найти радиус описанной окружности, нужна одна сторона (любая!) и противолежащий ей угол.

Расположение центра описанной окружности

В остроугольном треугольнике центр описанной окружности всегда лежит внутри треугольника

В тупоугольном треугольнике центр описанной окружности всегда лежит вне треугольника

В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, а радиус равен половине гипотенузы.

Описанная окружность — подробнее

Определение

Описанная окружность – такая окружность, что проходит через все три вершины треугольника, около которого она описана.

Свойства и центр описанной кружности

И вот, представь себе, имеет место удивительный факт:

Вокруг всякого треугольника можно описать окружность.

Почему этот факт удивительный?

Потому что треугольники ведь бывают разные!

И для всякого найдётся окружность, которая пройдёт через все три вершины, то есть описанная окружность.

Доказательство этого удивительного факта мы приведем чуть позже, а здесь заметим только, что если взять, к примеру, четырехугольник, то уже вовсе не для всякого найдётся окружность, проходящая через четыре вершины.

Вот, скажем, параллелограмм – отличный четырехугольник, а окружности, проходящей через все его четыре вершины – нет!

А есть только для прямоугольника:

Ну вот, а треугольник всякий и всегда имеет собственную описанную окружность! И даже всегда довольно просто найти центр этой окружности.

Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам этого треугольника.

Знаешь ли ты, что такое серединный перпендикуляр?

Серединный перпендикуляр — это прямая, проходящая через середину отрезка и перпендикулярная ему.

Прямая \( \displaystyle a\) – это серединный перпендикуляр к отрезку \( \displaystyle AB\).

А теперь посмотрим, что получится, если мы рассмотрим целых три серединных перпендикуляра к сторонам треугольника.

Вот оказывается (и это как раз и нужно доказывать, хотя мы и не будем), что все три перпендикуляра пересекутся в одной точке. Смотри на рисунок – все три серединных перпендикуляра пересекаются в одной точке \( \displaystyle O\).

Это и есть центр описанной около (вокруг) треугольника \( \displaystyle ABC\) окружности.

Как ты думаешь, всегда ли центр описанной окружности лежит внутри треугольника? Представь себе – вовсе не всегда!

Если треугольник тупоугольный, то центр его описанной окружности лежит снаружи!

А вот если остроугольный, то внутри:

Что же делать с прямоугольным треугольником?

В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы.

Если треугольник – прямоугольный, то не надо строить аж три перпендикуляра, а можно просто найти середину гипотенузы – и центр описанной окружности готов!

Да ещё с дополнительным бонусом:

В прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

Раз уж заговорили о радиусе описанной окружности: чему он равен для произвольного треугольника? И есть ответ на этот вопрос: так называемая теорема синусов.

В произвольном треугольнике:
\( \Large \displaystyle \frac<\sin \angle A>=2R\)

Так что ты теперь всегда сможешь найти и центр , и радиус окружности, описанной вокруг треугольника.

То есть чтобы найти радиус описанной окружности, нужно знать одну (!) сторону и один (!) противолежащий ей угол.

Хорошая формула? По-моему, просто отличная!

Доказательство теоремы

Теорема. Вокруг всякого треугольника можно описать окружность, при том единственным образом.

Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.

Давай наберёмся мужества и докажем эту теорему.

Если ты читал уже тему «Биссектриса» разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал – не переживай: сейчас во всём разберёмся.

Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).

Геометрическое место точек, обладающих свойством «\( \displaystyle X\)» — такое множество точек, что все они обладают свойством «\( \displaystyle X\)» и никакие другие точки этим свойством не обладают.

Ну вот, например, является ли множество мячей – «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы.

А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют.

В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:

Серединный перпендикуляр к отрезку является геометрическим местом точек, равноудалённых от концов отрезка.

Тут множество – это серединный перпендикуляр, а свойство «\( \displaystyle X\)» — это «быть равноудаленной (точкой) от концов отрезка».

Проверим? Итак, нужно удостовериться в двух вещах:

  • Всякая точка на серединном перпендикуляре находится на одинаковом расстоянии от концов отрезка
  • Всякая точка, которая равноудалена от концов отрезка – находится на серединном перпендикуляре к ему

Проверим 1. Пусть точка \( \displaystyle M\) лежит на серединном перпендикуляре к отрезку \( \displaystyle AB\).

Соединим \( \displaystyle M\) с \( \displaystyle A\) и с \( \displaystyle B\).Тогда линия \( \displaystyle MK\) является медианой и высотой в \( \displaystyle \Delta AMB\).

Значит, \( \displaystyle \Delta AMB\) – равнобедренный, \( \displaystyle MA=MB\) – убедились, что любая точка \( \displaystyle M\), лежащая на серединном перпендикуляре, одинаково удалена от точек \( \displaystyle A\) и \( \displaystyle B\).

Теперь 2. Почти точно так же, но в другую сторону. Пусть точка \( \displaystyle M\) равноудалена от точек \( \displaystyle A\) и \( \displaystyle B\), то есть \( \displaystyle MA=MB\).

Возьмём \( \displaystyle K\) – середину \( \displaystyle AB\) и соединим \( \displaystyle M\) и \( \displaystyle K\). Получилась медиана \( \displaystyle MK\). Но \( \displaystyle \Delta AMB\) – равнобедренный по условию \( \displaystyle (MA=MB)\Rightarrow MK\) не только медиана, но и высота, то есть – серединный перпендикуляр. Значит, точка \( \displaystyle M\) — точно лежит на серединном перпендикуляре.

Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.

Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».

Источник

Уравнение окружности описанной около треугольника по координатам

Уравнение описанной окружности

Как составить уравнение описанной около треугольника окружности по координатам его вершин? Как найти координаты центра описанной окружности? Как найти радиус описанной окружности, зная координаты вершин треугольника?

Решение всех этих задач сводится к одной — написать уравнение окружности, проходящей через три данные точки. Для этого достаточно подставить координаты точек (вершин треугольника) в уравнение окружности. Получим систему из трёх уравнений с тремя неизвестными: координатами центра и радиусом окружности.

Составить уравнение описанной окружности для треугольника с вершинами в точках A(2;1), B(6;3), C(9;2).

Подставив координаты вершин треугольника в уравнение окружности

получим систему уравнений

Вычтем из первого уравнения системы второе:

Теперь из второго уравнения системы вычтем третье:

Приравняем правые части равенств b=-2a+10 и b=3a-20:

Подставим в первое уравнение системы a=6 и b=-2:

a и b — координаты центра окружности, R — её радиус. Таким образом, точка (6;-2) — центр описанной около треугольника ABC окружности, радиус R=5, а уравнение описанной окружности

Для решения аналогичной задачи для четырёхугольника либо многоугольника достаточно знать координаты трёх его вершин.

Решить треугольник Онлайн по координатам

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

A ( ; ), B ( ; ), C ( ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Как найти координаты центра окружности, описанной около треугольника, знаякоординаты его вершин. Построение этой окружности

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

ТЕМА: КАК НАЙТИ КООРДИНАТЫ ЦЕНТРА ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ТРЕУГОЛЬНИКА, ЗНАЯКООРДИНАТЫ ЕГО ВЕРШИН. ПОСТРОЕНИЕ ЭТОЙ ОКРУЖНОСТИ.

Работу выполнила ученица 9 класса

МОУ «Лицей №1 пос. Львовский»

математики Габова Ю.В.

История появления координатной плоскости.

Координаты середины отрезка.

Расстояние между точками.

Окружность, описанная около треугольника.

Окружность вписанная в треугольник.

Доказательство тождества tg (90 0 + a )=- ctga .

Как найти координаты центра окружности, описанной около треугольника, зная координаты его вершин. Построение этой окружности.

Список используемой литературы.

Данная работа носит исследовательский характер.

Выведенные формулы с доказательством позволяют решать новые, еще не встречавшиеся задачи. Школьная программа не включает в себя решение наиболее сложных задач, связанных с координатной плоскостью, и мы предлагаем расширить круг знаний в этой области. Задачи, связанные с этими формулами, можно использовать как олимпиадные задачи, а также они будут интересны учащимся, изучающим курс математики, выходящий за рамки школьного курса.

Здесь предложена одна из задач на выбранную нами тему. Она связана с описанной окружностью, но можно составить задачи и на вписанную окружность, и на нахождение точки пересечения медиан, высот, биссектрис на координатной плоскости.

Данная работа направлена на расширение круга знаний ученика.

История появления координатной плоскости.

Более чем 100 лет до н.э. греческий ученый Гиппарх предложил опоясать на карте земной шар параллелями и меридианами и ввести хорошо теперь известные географические координаты: широту и долготу – и обозначить их числами.

В 14 веке французский математик Н. Оресм ввел, по аналогии с географическими, координаты на плоскости. Он предложил покрыть плоскость прямоугольной сеткой и назвать широтой и долготой то, что мы теперь называем абсциссой и ординатой.

Это нововведение оказалось чрезвычайно продуктивным. На его основе возник метод координат, связавший геометрию с алгеброй. Основная заслуга в создании метода координат принадлежит французскому математику Р. Декарту. Такую систему координат стали называть декартовой. Точку О пересечения прямых называют началом координат, а сами направленные прямые – осями, ось Ох – осью абсцисс, а ось Оу – осью ординат. Числа х, у называют декартовыми координатами точки (х; у). точка плоскости – геометрический объект – заменяется парой чисел (х;у), т.е. алгебраическим объектом. Принадлежность точки заданной кривой теперь соответствует тому, что числа х и у удовлетворяют некоторому уравнению. Так, координаты точки окружности с центром в заданной точке (а;в) удовлетворяют уравнению (х-а) 2 +(у-в) 2 =R 2 .

Координатная плоскость состоит из двух перпендикулярных прямых X и Y , которые пересекаются в начале отсчета – точке О и на них обозначен единичный отрезок (смотри рис.). эти прямые называют системой координат на плоскости, а точку О – началом координат. Плоскость, на которой выбрана система координат, называют координатной плоскостью.

Пусть А – некоторая точка плоскости. Проведем через нее прямую M А , перпендикулярно координатной прямой Х , и прямую LA , перпендикулярную координатной прямой Y . Т.к. точка М имеет координату 5, а точка L координату 4, то положение точки А определяется парой чисел (5;4). Эту пару чисел называют координатами точки А. Число 5 называют абсциссой точки А, а число 4 называют ординатой точки А. К оординатную прямую Х называют осью абсцисс, а координатную прямую Y — осью ординат. Точку А с абсциссой 5 и ординатой 4 обозначают так: А (5;4 ). При этом всегда на первом месте пишут абсциссу точки, а на втором месте её ординату. Если переставить местами координаты, то получится другая точка N (4;5), которая показана на рисунке.

Каждой точке А на координатной плоскости соответствует пара чисел: ее абсцисса и ордината. Наоборот, каждой паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами.

КООРДИНАТЫ СЕРЕДИНЫ ОТРЕЗКА.

где А (х 1 ;у 1 ) и В(х 2 ;у 2 ) – концы отрезка.

А (х 1 ;у 1 ) и В(х 2 ;у 2 ) – произвольные точки плоскости Оху.

y

А у А(х 1 ;у 1 )

С у С (х;у)

В у В(х 2 ;у 2 )

О А х С х В х х

Пусть АВ не параллелен оси Оу, т.е. х 1 ≠х 2. проведем через точки А,В,С прямые, параллельные оси Оу. Они пересекут ось Ох в точках А(х 1 ;0), В(х 2 ;0), С(х;0). По теореме Фалеса точка С х – середина отрезка [А х В х ], то есть А х С х = С х В х или отсюда либо х-х 1 =х-х 2 , либо х-х 1 =-(х-х 2 ). Первое равенство невозможно, т.к. х 1 ≠х 2, а второе дает . Если х 1 =х 2, то х=х 1 =х 2 и равенство остается верным. Ордината точки С находится аналогичными построениями и рассуждениями.

Следовательно, теорема доказана.

РАССТОЯНИЕ МЕЖДУ ТОЧКАМИ.

Если А 1 (х 1 ;у 1 ) и А 2 (х 2 ;у 2 ) две произвольные точки плоскости Оху, а d –расстояние между ними, то d вычисляется из соотношения .

Утверждение теоремы следует из определения проекции отрезка и теоремы Пифагора.

Уравнение вида называется общим уравнением прямой.

Угол α, определяемый, как показано на рисунке, называется углом наклона прямой к оси Ох. Тангенс угла наклона прямой к оси Ох называется угловым коэффициентом прямой; его обычно обозначают буквой k: k=tgα

y

α b x

Уравнение y=kx+b называется уравнением прямой с угловым коэффициентом; k – угловой коэффициент, b – величина отрезка, который отсекает прямая на оси Оу, считая от начала координат.

Уравнение вида ax+by+c=0 при условии, что a и b одновременно не равны нулю, задает прямую в плоскости Оху, и наоборот, уравнение произвольной прямой может быть записано в указанном виде.

Пусть b≠0. Тогда уравнение прямой можно переписать в виде y=kx+b.

Число k называется угловым коэффициентом прямой и равно тангенсу угла между положительной полуосью абсцисс и лучом прямой, лежащей в одной с положительной полуосью ординат полуплоскости относительно оси абсцисс.

Уравнение окружности ω(А;R) имеет вид

, где а и b- координаты центра А окружности ω(А;R).

Пусть дана окружность ω(А;R) на плоскости Оху, где А, центр окружности – имеет координаты а и b, по определению окружности для любой точки В(х;у), лежащей на окружности ω(А;R), верно АВ=R. Но в соответствии с теоремой: Если А 1 (х 1 ;у 1 ) и А 2 (х 2 ;у 2 ) две произвольные точки плоскости Оху, а d –расстояние между ними, то d вычисляется из соотношения .

АВ 2 . Таким образом, координаты х и у любой точки окружности ω(А;R) удовлетворяет уравнению

Обратно: любая точка В(х;у), координаты которой удовлетворяют уравнению, принадлежит окружности, т.к. расстояние от нее до точки А(a;b) равно R. Отсюда по определению данное уравнение – уравнение окружности ω(А;R).

ОКРУЖНОСТЬ, ОПИСАННАЯ ОКОЛО ТРЕУГОЛЬНИКА.

Окружность называется описанной около треугольника, если она проходит через все его вершины.

Центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров к сторонам треугольника, проведенных через середины этих сторон.

Пусть АВС – данный треугольник и О – центр окружности описанной около данного треугольника. ΔАОВ – равнобедренный (АО=ОВ как радиусы). Медиана ОD – этого треугольника одновременно является его высотой. Поэтому центр окружности лежит на прямой, перпендикулярной стороне АС и проходящей через ее середину. Так же доказывается, что цент окружности лежит на перпендикулярах к другим сторонам треугольника. Теорема доказана.

ОКРУЖНОСТЬ, ВПИСАННАЯ В ТРЕУГОЛЬНИК.

Окружность называется вписанной в треугольник, если она касается всех его сторон.

Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Пусть АВС — данный треугольник, О – центр вписанной в него окружности, D, E, F – точки касания окружности со сторонами. ΔAEO=ΔAOD по гипотенузе и катету (EO=OD – как радиус, АО – общая). Из равенства треугольников следует, что

КАК НАЙТИ КООРДИНАТЫ ЦЕНТРА ОКРУЖНОСТИ, ОПИСАННОЙ ОКОЛО ТРЕУГОЛЬНИКА, ЗНАЯ КООРДИНАТЫ ЕГО ВЕРШИН. ПОСТРОЕНИЕ ЭТОЙ ОКРУЖНОСТИ.

Теперь выясним, как найти координаты центра окружности, описанной около треугольника, зная координаты его вершин. Чтобы найти центр этой окружности, нужно найти точку пересечения серединных перпендикуляров, проведенных к сторонам этого треугольника.

Для начала найдем середину каждой стороны треугольника.

у В(а 1 ;в 1 ) Е С(а 2 ;в 2 )

D F

А(a;в)

О х

Рассмотрим сторону АВ. Зная координаты двух точек А и В, можно составить уравнение прямой АВ по виду: у=kx+L. Подставляя вместо х и у координаты точек А и В, получим систему:

Выражая k из первого уравнения и подставляя во второе, найдем значение L 1 . Подставляя значение L 1 в одно из уравнений, найдем значение k 1 . Зная k 1 и L 1 , получим уравнение прямой АВ: у=k 1 x+L 1.

Рассмотрим отдельно прямую АВ. Серединный перпендикуляр включает в себя сразу два понятия: медиану и высоту. Точки на сторонах треугольника для прохождения медиан найдены. Теперь через одну из этих точек проведем высоту.

Угол пересечения прямой АВ с осью Ох обозначим α (альфа). Тогда острый угол, образованный прямой DY и осью Ох будет равен: 180 0 -(90 0 +α)=90 0 -α. А угол, смежный с ним: 180 0 -(90 0 -α)=90 0 +α.

В уравнении прямой АВ у=k 1 x+L 1 k 1 — угловой коэффициент, он равен tgα.

Если k 1 =tgα, то k 2 в уравнении у=k 2 x+L 2 для прямой DY равно tg(90 0 +α)=-сtgα.

х

В(а 1 ;в 1 )

D

А(a;в)

О 0 — 0 + 1 * k 2 =tgα*(-сtgα)=-1, т.е. k 1 * k 2 =-1, отсюда k 2 =-1: k 1 .

Мы знаем уравнение прямой АВ: у=k 1 x+L 1 и знаем, как k 1 связан с k 2 . Тогда уравнение прямой DY примет вид : у=-1:k 1* x+L 2 ; зная координаты точки D, принадлежащей этой прямой, и подставляя их в это уравнение, найдем L 2.

Аналогично пишем уравнения другим серединным перпендикулярам треугольника и ( с помощью систем уравнений) находим точку их пересечения – это и есть центр описанной окружности.

Чтобы найти радиус, надо соединить центр окружности с одной из вершин треугольника и найти длину этого отрезка.

Теперь, зная центр и радиус описанной около треугольника окружности, можно ее построить.

Доказательство тождества tg(90 0 +α)=-сtgα.

Возьмем окружность радиусом 1 и центром в точке начала координат. Из начала координат проведем вектор Р, образующий с осью Ох угол α, а затем повернем этот вектор на 90 0 и проведем прямые, параллельные оси Оу и проходящие через точки А и В.

Пусть точка А(х а ;у а ), а точка В(х 90+α ; у 90+α ).

Рассмотрим ΔОАД. Он прямоугольный и следует, sinα=AD:OA=y a :1=y a . A cosα=OD:OA=x 1 :1=x 1 . Значит координаты точки А можно записать так A (cosα; sinα).

Аналогично точке А, координаты точки В можно записать: В(cos(90 0 +α); sin(90 0 +α)).

Треугольники ОВЕ и АОД равны по одной стороне и двум , прилежащим к ней углам. Из этого следует равенство:

ВЕ=ОД, sin(90 0 +α)=cosα и ОЕ=АД, cos (90 0 +α)=-sinα (т.к. ОЕ принимает отрицательное значение)

Из нашей исследовательской работы следует, что произведение коэффициентов перпендикулярных прямых равно -1. Этот результат работы можно использовать при решении других задач на координатной плоскости. Например, при нахождении точки пересечения высот треугольника. Попутно мы пришли к выводу, что tg(90+α)=-ctgα. Это тождество поможет успешно изучать тригонометрию. Мы предлагаем расширить круг задач в школьном курсе геометрии по теме «Координатная плоскость»

Список использованной литературы.

Энциклопедический словарь юного математика. Савин А.П. Москва. «Педагогика», 1989г.

Большой справочник математика для школьников и поступающих в вузы. Д.И. Аверьянов. «Дрофа», 1998г.

Энциклопедический словарь юного математика. Савин А.П. Москва. «Педагогика», 1985г.

Источник

Читайте также:  Если гипотенуза одного прямоугольного треугольника равна гипотенузе другого то они равны
Поделиться с друзьями
Объясняем