Калькулятор координаты точки на окружности

Содержание
  1. Уравнение окружности по заданному центру и радиусу в различных формах
  2. Уравнение окружности по заданному центру и радиусу в различных формах
  3. Центр окружности
  4. Уравнение окружности
  5. Общее уравнение окружности
  6. Стандартное уравнение окружности
  7. Параметрическое уравнение окружности
  8. Уравнение окружности в полярных координатах
  9. Уравнение окружности по трем точкам
  10. Уравнение окружности
  11. Пример
  12. Решение :
  13. Шаг :2
  14. Шаг :3
  15. Шаг :4
  16. Шаг :5
  17. Уравнение окружности, проходящей через три заданные точки
  18. Уравнение окружности, проходящей через три заданные точки
  19. Первая точка
  20. Вторая точка
  21. Третья точка
  22. Центр
  23. Как найти окружность, проходящюю через три заданные точки
  24. Деление круга на равные части
  25. Деление круга на равные по площади части радиусами
  26. Деление круга на равные по площади части параллельными хордами
  27. Деление круга на равные части радиусами
  28. Деление круга на равные части параллельными хордами
  29. Нахождение центра и радиуса окружности по общему уравнению окружности
  30. Нахождение центра и радиуса окружности по общему уравнению окружности
  31. Уравнение НЕ является общим уравнением окружности
  32. Приведение общего уравнения окружности к стандартному виду

Уравнение окружности по заданному центру и радиусу в различных формах

Этот онлайн-калькулятор показывает уравнение окружности в стандартной, параметрической и общей формах, по заданному центру и радиусу окружности. Описание и формулы приведены под калькулятором

Уравнение окружности по заданному центру и радиусу в различных формах

Центр окружности

Уравнение окружности

Уравнение окружности — это алгебраический способ описания всех точек, лежащих на некоторой окружности. То есть если координаты точки x и y обращают уравнение окружности в равенство — эта точка принадлежит данной окружности. Существуют разные формы записи уравнения окружности:

  • общее уравнение окружности
  • стандартное уравнение окружности 1
  • параметрическое уравнение окружности
  • уравнение окружности в полярных координатах

Общее уравнение окружности

Общее уравнение окружности с центром и радиусом выглядит так:
,
где

В таком виде довольно сложно судить о свойствах заданной этим уравнением окружности, а именно, о координатах центра и радиусе. Но эту форму достаточно легко привести к стандартной форме (ниже), которая гораздо нагляднее.

Стандартное уравнение окружности

Стандартное уравнение окружности с центром и радиусом выглядит так:

Переход от общей формы к стандартной заключается в применении метода выделения полного квадрата. Получив стандартную форму, можно легко узнать координаты центра и радиус. Подробнее можно посмотреть здесь — Метод выделения полного квадрата и здесь — Нахождение центра и радиуса окружности по общему уравнению окружности.

Параметрическое уравнение окружности

Параметрическое уравнение окружности с центром и радиусом выглядит так:

Уравнение называется «параметрическим», потому что и x и y зависят от «параметра» тета. Это переменная, которая может принимать любые значения (но конечно это должно быть одно и то же значение в обоих уравнениях). Для параметрического уравнения используется определение синуса и косинуса в прямоугольном треугольнике построенном на радиусе и перпендикуляров от точки на окружности до координатных осей.

Читайте также:  Прямоугольный жесткий воздуховод era 511вп 1500 мм

Уравнение окружности в полярных координатах

Для записи уравнения окружности в полярных координатах требуются полярные координаты центра окружности по отношению к началу координат. Если полярные координаты центра окружности — это , то полярные координаты точки окружности должны удовлетворять следующему уравнению:
,
где a — радиус окружности.

Так, во всяком случае, его называют в англоязычной литературе. Насчет русского термина я не уверен, по-моему эту форму рассматривают просто как еще один способ записи общего уравнения окружности, тем более что переход от общего уравнения к стандартному довольно простой. ↩

Источник

Уравнение окружности по трем точкам

Калькулятор расчета онлайн уравнения окружности по трем заданным точкам, а также нахождение координат точки центра и радиус окружности.

Уравнение окружности

r 2 = (x — h) 2 + (y — k) 2

  • h,k — координаты центра Окружности
  • x,y — координаты точки окружности
  • r — радиус

Пример

Найдите координаты точки центра окружности, радиус и уравнение окружности, если известны координаты трех точек A (2,2), B (2,4) и C (5,5)

Решение :

Подставляем координаты точек в формулу

  1. (2 — h) 2 + (2 — k) 2 = r 2
  2. (2 — h) 2 + (4 — k) 2 = r 2
  3. (5 — h) 2 + (5 — k) 2 = r 2

Шаг :2

Найдем значение k упрощая 1 и 2 уравнения

  • (2 — h) 2 + (2 — k) 2 = (2 — h) 2 + (4 — k) 2
  • 4 — 4h + h 2 + 4 — 4k + k 2 = 4 — 4h + h 2 +16 — 8k + k 2
  • 8 — 4k = 20 — 8k
  • k= 3

Шаг :3

Найдем значение h упрощая уравнения 2 и 3

  • (2 — h) 2 + (2 — k) 2 = (5 — h) 2 + (5 — k) 2
  • 4 — 4h + h 2 + 4 — 4k + k 2 = 25 — 10h + h 2 + 25 — 10k + k 2
  • 8 — 4k — 4h = 50 — 10h — 10k
  • 6k + 6h = 42

Подставив значение k=3 в уравнение

Получаем координаты точки центра (h,k) = ( 4,3 )

Шаг :4

Подставим значения h,k в формулу

  • r 2 = (x — h) 2 + (y — k) 2
  • r 2 = (2 — 4) 2 + (2 — 3) 2
  • r 2 = (-2) 2 + (-1) 2
  • r 2 = 5
  • r = 2.24

Шаг :5

Подставим значения h, k в уравнение окружности

(x — h) 2 + (y — k) 2

Уравнение окружности = (x — 4) 2 + (y — 3) 2

Источник

Уравнение окружности, проходящей через три заданные точки

Этот онлайн калькулятор выводит уравнение окружности, проходящей через три заданные точки

Этот онлайн-калькулятор находит окружность, проходящую через три заданные точки. Калькулятор находит центр, радиус и уравнение окружности, и строит окружность на графике. Методы, использованные для нахождения центра и радиуса окружности, описаны ниже под калькулятором.

Уравнение окружности, проходящей через три заданные точки

Первая точка

Вторая точка

Третья точка

Центр

Как найти окружность, проходящюю через три заданные точки

Давайте вспомним как выглядит уравнение окружности в стандартной форме:

Читайте также:  Около любого правильного многоугольника можно описать несколько окружностей разного радиуса

Так как все три точки принадлежат одной окружности, мы можем записать систему уравнений

Значения , и мы знаем. Давайте сделаем подстановку с неизвестными переменнами a, b и c.

Теперь у нас есть три линейных уравнения для трех неизвестных — составим систему уравнений соответствующую матричной форме:

Мы можем решить эту систему уравнений, используя, к примеру, Гауссово исключение. (подробнее прочитать об этом можно здесь — Решение системы линейных алгебраических уравнений методом Гаусса ). «Нет решений» — означает, что точки коллинеарны и окружность через них провести нельзя.

Координаты центра окружность и ее радиус относится к подобному решению

Зная центр и радиус, мы можем получить уравнение окружности, используя этот калькулятор — Уравнение окружности по заданному центру и радиусу в различных формах

Источник

Деление круга на равные части

Статья содержит два калькулятора, рассчитывающие параметры деления круга на равные по площади части радиусами и параллельными хордами

Ниже представлены два калькулятора, рассчитывающие параметры разделения круга на равные части. Сначала — традиционный калькулятор, который делит круг на равные части радиусами (примерно так, как режут пиццу или торт), под ним — нетрадиционный калькулятор, который делит круг на равные по площади части параллельными хордами. Оба калькулятора визуализируют результат рисунком. Методы расчета с формулами для обоих калькуляторов приведены ниже, под калькуляторами.

Деление круга на равные по площади части радиусами

Деление круга на равные по площади части параллельными хордами

Деление круга на равные части радиусами

Традиционный и очень простой метод деления круга — по факту, нарезка равных секторов. Метод и формулы очень просты:

  1. Определяем угловой размер каждого сектора в радианах, путем деления 360 градусов на нужное число секторов.
  1. Определяем размер дуги сектора, перемножая радиус на угол в радианах
  1. Определяем размер хорды по теореме косинусов (хорда является основанием равнобедренного треугольника с боковыми сторонами R и противолежащим углом альфа.

Собственно и всё — мы получили все характеристики для N равных секторов

Деление круга на равные части параллельными хордами

Этот способ более любопытен, чем предыдущий. Для простоты будем рассматривать верхнюю половину круга, так как с нижней все будет симметрично.

Задача состоит в определении x-вой координаты точек, через которые нужно проводить хорды (на рисунке это точки x1 и x2). Выведем для начала формулу площади куска, отсекаемого хордой слева.

Верхнюю полуокружность можно представить графиком функции y=f(x), где x — это координата вдоль оси абсцисс, а y — это функция, численно равная y координате соответствующей точки верхней полуокружности.

По теореме Пифагора получаем следующую функцию

Чтобы получить площадь фигуры, отсекаемой хордой слева, надо проинтегрировать эту функцию от -R до x. Первообразная функции равна:

Осталось определиться с константой. Нам надо, чтобы в точке с координатами -R площадь была равна нулю. Подставив -R вместо x в формулу выше, получаем

Читайте также:  Прямоугольная рамка с виньетками

Итак, полное выражение

Теперь рассмотрим нахождение координат крайней левой точки. Нам известна площадь, которую она должна отсечь (напоминаю, речь идет о полуокружности)

Таким образом мы можем приравнять

Что дает нам такое финальное уравнение

Данное уравнение является трансцендентным, а поэтому находить координату первой точки придется численным методом, например, методом бисекции или методом Ньютона. Калькулятор использует метод Ньютона.

Вторая и последующие точки находится аналогично, путем изменения размера отсекаемой площади. Для второй точки это будет , для третьей и так далее.

Зная координаты точек, несложно рассчитать все остальные параметры, в частности, длину хорды.

Источник

Нахождение центра и радиуса окружности по общему уравнению окружности

Этот калькулятор проверяет, является ли введенное уравнение общим уравнением окружности, и вычисляет координаты центра и радиуса окружности, если это возможно. Описание способа решения подобных задач находится под калькулятором

Нахождение центра и радиуса окружности по общему уравнению окружности

Уравнение НЕ является общим уравнением окружности

Приведение общего уравнения окружности к стандартному виду

Калькулятор выше можно применять для решения задач на уравнение окружности. Чаще всего вы имеете дело с уравнением окружности, выраженном в так называемом стандартном виде

Из этого уравнения достаточно легко найти центр окружности — это будет точка с координатами (a,b), и радиус окружности — это будет квадратный корень из правой части уравнения.

Однако, если возвести в квадрат выражения в скобках и перенести правую часть налево, то уравнение станет выглядеть примерно так:

Это — уравнение окружности в общем виде. Здесь радиус и центр окружности уже не выделены явно, и в задачах обычно просят их найти именно по общему виду уравнения окружности.

Способ решения такого рода задач следующий:

Перегруппируем слагаемые уравнения

  • Для каждой скобки применим метод выделения полного квадрата (подробнее смотри тут — Метод выделения полного квадрата), то есть заменим выражение вида на выражение вида . С учетом того, что коэффициенты при квадратах равны единице, а свободный член можно принять за ноль, формула для вычисления h и k упрощаются.
  • Как видим, выражение в конце это уравнение окружности в стандартном виде, из которого уже легко получить и координаты центра окружности и ее радиус. Если же справа получилось отрицательное число — значит заданное вначале уравнение не является уравнением окружности (бывают задачи и на такую проверку). Калькулятор тоже проверяет это условие.

    Для решения обратной задачи — нахождения общего уравнения окружности по координатам центра и радиусу — можно использовать калькулятор Уравнение окружности по заданному центру и радиусу в различных формах

    Источник

    Поделиться с друзьями
    Объясняем