Каким свойством обладает диагональ прямоугольного параллелепипеда

Свойства граней и диагоналей параллелепипеда

Теорема. Во всяком параллелепипеде противоположные грани равны и параллельны.

Так, грани (рис.) BB1С1С и AA1D1D параллельны, потому, что две пересекающиеся прямые BB1 и B1С1 одной грани параллельны двум пересекающимся прямым AA1 и A1D1 другой. Эти грани и равны, так как B1С1=A1D1, B1B=A1A (как противоположные стороны параллелограммов) и ∠BB1С1 = ∠AA1D1.

Теорема. Во всяком параллелепипеде все четыре диагонали пересекаются в одной точке и делятся в ней пополам.

Возьмем (рис.) в параллелепипеде какие-нибудь две диагонали, например, AС1 и DB1, и проведем прямые AB1 и DС1.

Так как ребра AD и B1С1 соответственно равны и параллельны ребру BС, то они равны и параллельны между собой.

Вследствие этого фигура ADС1B1 есть параллелограмм, в котором С1A и DB1 — диагонали, а в параллелограмме диагонали пересекаются пополам.

Это доказательство можно повторить о каждых двух диагоналях.

Поэтому диагональ AC1 пересекается с BD1 пополам, диагональ BD1 с A1С пополам.

Таким образом, все диагонали пересекаются пополам и, следовательно, в одной точке.

Теорема. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.

Пусть (рис.) AC1 есть какая-нибудь диагональ прямоугольного параллелепипеда.

Проведя AC, получим два треугольника: AC1С и ACB. Оба они прямоугольные:

первый потому, что параллелепипед прямой, и следовательно, ребро СС1 перпендикулярно к основанию,

второй потому, что параллелепипед прямоугольный, значит в основании его лежит прямоугольник.

Из этих треугольников находим:

AC 2 1 = AC 2 + СС 2 1 и AC 2 = AB 2 + BC 2

Следовательно, AC 2 1= AB 2 + BC 2 + СС 2 1 = AB 2 + AD 2 + AA 2 1

Следствие. В прямоугольном параллелепипеде все диагонали равны .

Источник

Свойства параллелепипеда

Параллелепипеды бываю прямыми (боковое ребро перпендикулярно основанию) и наклонными.

Параллелепипед, в основании которого лежит прямоугольник, называется прямоугольным параллелепипедом.

Грани параллелепипеда, не имеющие общего ребра, называются противоположными ( и ), в противном случае – смежные ( и ).

Отрезок, соединяющий противоположные вершины, называется диагональю () параллелепипеда.

Расстояние между плоскостями оснований называют высотой параллелепипеда. В прямом параллелепипеде высота совпадает с боковым ребром.

Свойства параллелепипеда

  1. Противоположные грани параллелепипеда равны и параллельны.
  2. Все четыре диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.
  3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины и высоты):
Читайте также:  Прямоугольные гардеробные комнаты дизайн проекты

Объем параллелепипеда равен произведению площади основания на высоту:

Площадь боковой поверхности параллелепипеда равна произведению периметра перпендикулярного сечения на боковое ребро

Источник

Диагональ прямоугольного параллелепипеда — свойства, формулы и примеры

Умение определять параметры различных фигур на плоскости и в пространстве играет важную роль, когда необходимо вычислить длины сторон, площади и объемы. Формула диагонали прямоугольного параллелепипеда представляет собой простое выражение, с помощью которого можно рассчитать одну из важных характеристик геометрической фигуры.

Объект изучения

Прежде чем рассматривать формулу диагонали параллелепипеда, следует изучить подробно, что собой представляет эта фигура. Речь идет о призме, для которой характерны следующие особенности:

  • основание представляет собой прямоугольник или квадрат;
  • она является прямой, то есть длина любого ее бокового ребра совпадает с высотой.

Как и любой объект в пространстве, параллелепипед состоит из набора элементов. К ним относятся:

  • 8 вершин (точки, в которых пересекаются 3 ребра).
  • 12 ребер (8 из них принадлежат двум основаниям и 4 являются боковыми).
  • 6 граней (2 из них называются основаниями, остальные 4 образуют боковую поверхность). Все грани — прямоугольники. Если они являются квадратами, получается частный случай прямоугольного параллелепипеда — куб.

    Фигуру можно получить, если взять плоский четырехугольник с прямыми углами и переместить его вдоль направленного отрезка, который перпендикулярен его плоскости. Длина вектора будет высотой, а исходный прямоугольник — основанием.

    С прямоугольным параллелепипедом удобно работать, поскольку его форма идеально соответствует декартовой системе координат. По этой причине существует множество формул, применяя которые можно рассчитать любую геометрическую характеристику объекта.

    Теорема Пифагора

    Теорема справедлива для любого треугольника с прямым углом. Данные исторических архивов свидетельствуют, что греческий философ Пифагор впервые доказал, что при складывании квадратов катетов всегда получается квадрат гипотенузы, то есть стороны, которая лежит против прямого угла.

    Теорема Пифагора — полезный геометрический инструмент при расчетах параметров не только треугольников, но и прямоугольников. Если 2 противоположные (несмежные) вершины четырехугольника соединить, получится отрезок, который называется диагональю. Она делит фигуру ровно на 2 половинки, каждая представляет собой треугольник с углом 90 градусов, если исходный четырехугольник является прямоугольным.

    Исходя из геометрических построений можно понять, что прямоугольник имеет 2 одинаковые диагонали. Если предположить, что стороны фигуры равны a и b, диагональ c легко рассчитывается по теореме Пифагора: c = (a 2 + b 2 )^0,5.

    В случае квадрата получается еще более простая формула: c = a*(2)^0,5.

    Диагональ параллелепипеда

    Особое внимание этому элементу фигуры принято уделять по причине того, что он часто используется для вычисления объема и площади поверхности, совместно с двумя другими линейными параметрами. Прямоугольный параллелепипед определяется тремя линейными характеристиками.

    Читайте также:  Алгоритм определения окружности головы ребенка

    Геометрический элемент

    Чтобы построить диагональ параллелепипеда, необходимо рассмотреть его произвольную вершину. Она соединена ребрами с тремя другими. Еще 3 можно соединить с помощью диагоналей граней. В итоге остается лишь одна вершина, которая с исходной соединяется отрезком, проходящим через весь объем фигуры. Этот отрезок называется диагональю параллелепипеда.

    Из этих рассуждений несложно понять, сколько диагоналей у параллелепипеда — 4. Их особым свойством является равенство длин. Оно следует из факта симметричности фигуры.

    Вывод формулы

    Для определения длины диагонали параллелепипеда следует ввести некоторые обозначения. Все вершины одного основания будут A, B, C, D, а их аналоги — A1, B1, C1, D1.

    Пусть следует найти диагональ AC1. Дополнительными обозначениями сторон, которые облегчат процедуру вывода формулы, будут:

    • a — сторона AB;
    • b — сторона AD;
    • h — высота параллелепипеда, равна длине сторон AA1, BB1, CC1 и DD1.

    Сначала необходимо рассмотреть треугольник ABC, который лежит в плоскости одного из оснований. В нем угол B является прямым, а сторона AC — гипотенуза. Если применить теорему Пифагора, получится следующий результат для длины AC: AC = (a 2 + b 2 )^0,5.

    Теперь следует обратить внимание на фигуру, которая ограничена вершинами A, C и C1. Это прямоугольный треугольник, в котором стороны AC и CC1 являются катетами, а диагональ AC1 — гипотенуза. Используя введенные обозначения и снова применяя теорему греческого философа: AC1 = (AC 2 + CC1 2 )^0,5 = (a 2 + b 2 + h 2 )^0,5.

    Полученное выражение является искомой формулой для диагонали. Равенство позволяет сделать умозаключение: какие бы стороны ни образовывали фигуру, и какой бы формы она ни была, ее объемная диагональ всегда больше, чем любая из диагоналей грани. Они станут равны только в случае вырождения параллелепипеда в прямоугольник на плоскости (h = 0).

    Случай куба

    Все рассуждения касательно вывода формулы диагонали параллелепипеда остаются верными для куба. Поскольку фигура обладает высокой симметрией в пространстве, для однозначного определения всех ее параметров необходимо знать лишь одну-единственную сторону квадрата. Пусть это будет a. Общая формула для длины диагонали имеет вид: AC1 = (a 2 + b 2 + h 2 )^0,5.

    Если подставить сюда вместо b и h длину стороны a, получается следующее простое равенство: AC1 = a*(3)^0,5.

    В кубе его объемная диагональ приблизительно в 1,225 раза больше, чем аналогичный отрезок для грани.

    Объем и площадь поверхности

    Полученная формула для диагонали не является исключительно теоретической. Ее можно применять для расчета важных для практики величин, например, объема фигуры и площади ее поверхности.

    Читайте также:  Невидимые вершины прямоугольного параллелепипеда

    Объем V и площадь поверхности S вычисляются по таким формулам:

    V и S однозначно определяются, если знать 3 линейных параметра фигуры. Одним из них может являться длина объемной диагонали, которая зависит от тех же величин, что V и S.

    При решении задач, в которых необходимо найти какой-либо объемный параметр или характеристику площади через известные диагонали, потребуется выполнять вычисления с квадратными и кубическими уравнениями.

    Косоугольная фигура

    Параллелепипед бывает не только прямоугольным, но и наклонным или косоугольным. Основной его отличительной чертой является, что боковое ребро наклонено к плоскости прямоугольного основания под некоторым углом, который отличается от 90 градусов. В таком случае высота фигуры оказывается меньше длины этого ребра.

    Наклонный параллелепипед также имеет 4 диагонали в объеме, однако они не всегда имеют одинаковую длину. В этом случае не существует какой-либо конкретной формулы для расчета длины. Для решения подобных сложных задач можно воспользоваться двумя методами:

  • Если известны двугранные углы, определяющие наклоны боковых граней по отношению к основаниям, можно воспользоваться знаниями тригонометрии для вычисления диагоналей. Метод является достаточно сложным, поскольку требует знания других теорем.
  • Если известны координаты вершин параллелепипеда в прямоугольной декартовой системе координат, можно воспользоваться достаточно простым методом вычисления длин отрезков. Для этого следует найти разности соответствующих координат выбранных вершин, возвести каждую из разностей в квадрат, взять сумму полученных трех слагаемых и возвести ее в степень ½. Это обычный метод нахождения длины отрезка по координатам его концов.

    Пример решения задачи

    Пусть дан прямоугольный параллелепипед, основаниями которого являются прямоугольники ABCD и A1B1C1D1. Известны следующие его параметры:

    • диагональ грани бокового четырехугольника AD1 = 5 см;
    • высота AA1 = 4 см;
    • объем V = 64 см.

    Необходимо найти объемную диагональ этой фигуры.

    Пусть AB = a, AD = b, AA1 = h. Для решения задачи сначала необходимо выписать известные равенства, выраженные через параметры a, b, h:

    • V = a*b*h = 64;
    • AD1 2 = a 2 + h 2 = 5 2 = 25.

    Из выражения для AD1 и h = 4 см получается значение a = 3 см. При подстановке его в формулу для V, получается значение стороны b = 5,33 см.

    Теперь остается подставить значения a, b, h и рассчитать по формуле значение AC1. Получается число: AC1 = (a 2 + b 2 + h 2 )^0,5 = (3 2 + 5,33 2 + 4 2 )^0,5 = 7,31 см.

    Таким образом, все диагонали прямоугольного параллелепипеда равны между собой. Для определения их длины необходимо сложить квадраты длин всех сторон объемной фигуры и взять квадратный корень от полученной суммы.

    Источник

  • Поделиться с друзьями
    Объясняем