- Равнобедренный треугольник, свойства, признаки и формулы
- Равнобедренный треугольник, свойства, признаки и формулы
- Равнобедренный треугольник (понятие):
- Свойства равнобедренного треугольника:
- Признаки равнобедренного треугольника:
- Формулы равнобедренного треугольника:
- Равнобедренный треугольник в природе, технике и культуре:
- Мировая экономика
- Справочники
- Востребованные технологии
- Поиск технологий
- О чём данный сайт?
- О Второй индустриализации
- Равнобедренный треугольник
- Равнобедренный треугольник — коротко о главном
- Определение равнобедренного треугольника
- Высота равнобедренного треугольника
- Доказательство равенства треугольников
- Признаки равнобедренного треугольника
- Как пользоваться признаками равнобедренного треугольника при решении задач
- 2 задачи на равнобедренный треугольник
Равнобедренный треугольник, свойства, признаки и формулы
Равнобедренный треугольник, свойства, признаки и формулы
Равнобедренный треугольник – это треугольник, у которого две стороны равны между собой по длине.
Равнобедренный треугольник (понятие):
Равнобедренный треугольник – это треугольник, у которого две стороны равны между собой по длине.
Две равные стороны равнобедренного треугольника называются боковыми, а третья неравная им сторона – основанием.
Рис. 1. Равнобедренный треугольник
АВ = ВС – боковые стороны, АС – основание,
∠ АВС – вершинный угол, ∠ BАC и ∠ BСA – углы при основании
По определению, каждый правильный (равносторонний) треугольник также является равнобедренным, но не каждый равнобедренный треугольник – правильным (равносторонним).
Угол, образованный боковыми сторонами, называется вершинным углом, а углы, одной из сторон которых является основание, называются углами при основании.
Различают следующие виды равнобедренных треугольников:
– остроугольный – все углы острые;
– прямоугольный – угол при вершине прямой, а при основании углы острые;
– тупоугольный – угол при вершине тупой, а при основании углы острые;
– равносторонний (или правильный) – все стороны равны и все углы равны.
Свойства равнобедренного треугольника:
1. В равнобедренном треугольнике углы при основании равны.
Рис. 2. Равнобедренный треугольник
2. Биссектрисы, медианы и высоты, проведённые из этих углов равны между собой.
Рис. 3. Равнобедренный треугольник
АН1 = СН2 – высота, АМ1 = СМ2 – медиана, АL1 = СL2 – биссектриса, проведённые из углов при основании
3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Рис. 4. Равнобедренный треугольник
ВD – биссектриса, высота и медиана, проведенные к основанию – это один и тот же отрезок
4. Центры вписанной и описанной окружностей лежат на медиане (биссектрисе, высоте), проведенной к основанию равнобедренного треугольника.
Рис. 5. Равнобедренный треугольник
R – радиус описанной окружности, r – радиус вписанной окружности
Признаки равнобедренного треугольника:
– если в треугольнике два угла равны, то он равнобедренный;
– если в треугольнике биссектриса является медианой или высотой, то этот треугольник равнобедренный;
– если в треугольнике медиана является биссектрисой или высотой, то этот треугольник равнобедренный;
– если в треугольнике высота является медианой или биссектрисой, то этот треугольник равнобедренный.
Формулы равнобедренного треугольника:
Пусть a – длина двух равных сторон равнобедренного треугольника, b – длина основания, h – высота (биссектриса, медиана) равнобедренного треугольника, проведенная к основанию, α – углы при основании, β – вершинный угол, R – радиус описанной окружности, r – радиус вписанной окружности (см. Рис. 6, 7, 8).
Рис. 6. Равнобедренный треугольник
Формулы длины основания (b):
,
,
.
Формулы длины равных сторон (а):
.
Формулы углов:
Рис. 7. Равнобедренный треугольник
,
,
.
Формулы периметра (Р) равнобедренного треугольника:
Рис. 8. Равнобедренный треугольник
,
.
Формулы площади (S) равнобедренного треугольника:
,
,
.
Равнобедренный треугольник в природе, технике и культуре:
Например, молекула сероводорода имеет структуру равнобедренного треугольника с атомом серы S в центре.
Рис. 1. Структура молекулы сероводорода
Длина боковой стороны – связи HS = 133,6 пм, а вершинный угол ∠HSH = 92,1°.
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Мировая экономика
Справочники
Востребованные технологии
- Концепция инновационного развития общественного производства – осуществления Второй индустриализации России на период 2017-2022 гг. (107 130)
- Экономика Второй индустриализации России (103 531)
- Программа искусственного интеллекта ЭЛИС (30 114)
- Этилен (этен), получение, свойства, химические реакции (30 075)
- Метан, получение, свойства, химические реакции (26 920)
- Крахмал, свойства, получение и применение (26 569)
- Природный газ, свойства, химический состав, добыча и применение (25 567)
- Целлюлоза, свойства, получение и применение (25 110)
- Пропилен (пропен), получение, свойства, химические реакции (24 001)
- Прямоугольный треугольник, свойства, признаки и формулы (23 752)
Поиск технологий
О чём данный сайт?
Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.
Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.
Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!
Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.
О Второй индустриализации
Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.
Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.
Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.
Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.
Источник
Равнобедренный треугольник
Среди всех треугольников есть два особенных вида: прямоугольные и равнобедренные.
Чем же эти виды треугольников такие уж особенные?
Ну, во-первых, такие треугольники чрезвычайно часто оказываются главными «действующими лицами» задач ЕГЭ первой части.
А во-вторых, задачи про прямоугольные и равнобедренные треугольники решаются гораздо легче, чем другие задачи по геометрии.
Нужно всего лишь знать несколько правил и свойств. Все самое интересное о прямоугольных треугольниках обсуждается в соответствующей теме, а сейчас рассмотрим равнобедренные треугольники.
Равнобедренный треугольник — коротко о главном
Определение равнобедренного треугольника
Равнобедренный треугольник – треугольник, у которого есть две равные стороны.
- \( \displaystyle AB=BC\) – боковые стороны
- \( \displaystyle AC\) – основание
Свойства равнобедренного треугольника
Углы при основании равнобедренного треугольника равны: \( \displaystyle \angle A\ =\angle C\);
Высота, проведённая к основанию равнобедренного треугольника, совпадает с медианой и биссектрисой: \( \displaystyle BH\) — высота, медиана и биссектриса.
Признаки равнобедренного треугольника
Если в некотором треугольнике два угла равны, то он – равнобедренный;
Если в некотором треугольнике совпадают высота и биссектриса или высота и медиана или медиана и биссектриса, проведённые к одной стороне, то такой треугольник – равнобедренный.
Определение равнобедренного треугольника
Треугольник называется равнобедренным, если у него есть две равные стороны.
Посмотри как это выглядит:
Как и у прямоугольного треугольника, у равнобедренного треугольника есть специальные названия для сторон.
Две равные стороны называются боковыми сторонами, а третья сторона – основанием.
И снова внимание на картинку:
Может быть, конечно, и так:
Так что будь внимательным: боковая сторона – одна из двух равных сторон в равнобедренном треугольнике, а основание – третья сторона.
Чем же так уж хорош равнобедренный треугольник?
Чтобы это понять, давай проведём высоту к основанию. Ты помнишь, что такое высота?
Высота равнобедренного треугольника
Высота — это просто линия, проведённая из вершины треугольника перпендикулярно противоположной стороне.
Итак, провели высоту. Что же получилось?
Из одного равнобедренного треугольника получилось два прямоугольных.
Это уже хорошо, но так получится в любом, даже самом «кособедренном» треугольнике.
Тоже два прямоугольных….
Чем же отличается картинка для равнобедренного треугольника? Смотри ещё раз:
Видишь, два прямоугольных треугольника (Δ. и Δ. ) – одинаковые!
Или, как математики любят говорить? Равные!
Ну, во-первых, конечно, этим странным математикам мало просто видеть – нужно непременно доказывать. А то вдруг эти треугольники чуть-чуть разные, а мы будем считать их одинаковыми.
Но не переживай: в данном случае доказывать почти так же просто, как и видеть.
Доказательство равенства треугольников
Посмотри внимательно, у нас есть:
И, значит, \( \displaystyle AH\text< >=\text< >CH\)!
Да мы просто найдём и \( \displaystyle AH\), и \( \displaystyle CH\) из теоремы Пифагора (помня ещё при этом, что \( \displaystyle AB=BC\))
Удостоверились? Ну вот, теперь у нас
А уж по трём сторонам – самый легкий (третий) признак равенства треугольников.
Ну вот, наш равнобедренный треугольник разделился на два одинаковых прямоугольных.
Отметим на картинке все одинаковые элементы (углы и стороны).
Видишь, как интересно? Получилось, что:
- В равнобедренном треугольнике углы при основании равны: \( \displaystyle \angle A=\angle C\);
- Высота, проведенная к основанию \( \displaystyle (ВH)\), совпадает с медианой и биссектрисой
- \( \displaystyle AH=CH\)
- \( \displaystyle \angle 1=\angle 2\).
Вспоминаем тут, что медиана – линия, проведённая из вершины, которая делит сторону пополам, а биссектриса – делит угол.)
Ну вот, здесь мы обсудили, что хорошего можно увидеть, если дан равнобедренный треугольник.
Мы вывели, что у равнобедренного треугольника углы при основании равны, а высота, биссектриса и медиана, проведенные к основанию, совпадают.
И теперь возникает другой вопрос: а как узнать, равнобедренный ли треугольник?
То есть, как говорят математики, каковы признаки равнобедренного треугольника?
Признаки равнобедренного треугольника
И оказывается, что нужно просто «перевернуть» все высказывания наоборот. Так, конечно, не всегда бывает, но равнобедренный треугольник всё-таки отличная штука! Что же получится после «переворачивания»?
Если в каком-то треугольнике есть два равных угла, то такой треугольник –равнобедренный (ну и естественно, углы эти окажутся при основании).
Если в каком-то треугольнике высота и медиана, или высота и биссектриса, или биссектриса и медиана, проведённые к какой-то стороне, совпадут, то такой треугольник – равнобедренный, а сторона эта – основание.
Ну вот смотри:
Если совпадают высота и медиана, то:
Если совпадают высота и биссектриса, то:
Если совпадают биссектриса и медиана, то:
Ну вот, не забывай и пользуйся:
Как пользоваться признаками равнобедренного треугольника при решении задач
- Если дан равнобедренный треугольный треугольник, смело проводи высоту, получай два прямоугольных треугольника и решай задачу уже про прямоугольный треугольник;
- Если дано, что два угла равны, то треугольник точно равнобедренный и можно проводить высоту и ….( Дом, который построил Джек… 🙂 );
- Если оказалось, что высота разделила сторону пополам, то треугольник – равнобедренный со всеми вытекающими бонусами;
- Если оказалось, что высота разделила угол полам – тоже равнобедренный;
- Если биссектриса разделила сторону пополам или медиана разделила угол, то это тоже бывает только в равнобедренном треугольнике.
Давай посмотрим, как это выглядит в задачах.
2 задачи на равнобедренный треугольник
Задача 1 (самая простая)
В треугольнике \( \displaystyle ABC\) стороны \( \displaystyle AB\) и \( \displaystyle AC\) равны, а \( \displaystyle \angle BAC=70<>^\circ \).
Найти \( \displaystyle \angle ABC\).
Решение
Что здесь основание? Конечно, \( \displaystyle BC\).
Вспоминаем, что если \( \displaystyle AB=AC\), то и \( \displaystyle \angle B=\angle C\).
Источник