Как вычислить объем конуса если известен его образующая

Содержание
  1. Объём конуса
  2. Онлайн калькулятор
  3. Через площадь основания и высоту
  4. Через радиус и другие параметры
  5. Теория
  6. Объём конуса через площадь основания и высоту
  7. Формула
  8. Пример
  9. Объём конуса через образующую и радиус
  10. Формула
  11. Пример
  12. Объём конуса через радиус и высоту
  13. Формула
  14. Пример
  15. Объём конуса через угол раствора (α) и радиус
  16. Формула
  17. Пример
  18. Объём конуса через угол β и радиус
  19. Формула
  20. Пример
  21. Объём конуса через угол γ и радиус
  22. Формула
  23. Пример
  24. Формула объема конуса
  25. Связанные определения для конуса
  26. Объем прямого углового конуса
  27. Первый способ вычисления объема конуса
  28. Второй способ вычисления объема конуса
  29. Калькулятор объема конуса
  30. Объем усеченного конуса
  31. Первый способ вычисления объема усеченного конуса
  32. Второй способ вычисления объема усеченного конуса
  33. КОНУС формулы объема, площади поверхности
  34. Онлайн-калькулятор
  35. Связанные определения для конуса
  36. Формула образующей конуса
  37. Нахождение объема конуса: формула и задачи
  38. Формула вычисления объема
  39. 1. Через площадь основания и высоту
  40. 2. Через радиус основания и высоту
  41. Примеры задач
  42. Конус формулы
  43. Формула образующей конуса
  44. Формула площади боковой поверхности конуса
  45. Формула площади основания конуса
  46. Формула площади конуса
  47. Формула объема конуса

Объём конуса

Онлайн калькулятор

Через площадь основания и высоту

Площадь основания Sосн =
Высота h =

Через радиус и другие параметры

=
=

Теория

Объём конуса через площадь основания и высоту

Чему равен объём конуса V, если площадь его основания Sосн, а высота h:

Формула

Пример

Для примера посчитаем, чему равен объём конуса, у которого площадь основания Sосн = 3 см², а высота h = 5 см :

Объём конуса через образующую и радиус

Чему равен объём конуса V, если его образующая l, радиус основания r?

Формула

Пример

Для примера посчитаем, чему равен объём конуса, у которого образующая l = 5 см, а радиус основания r = 2 см:

V = ⅓ ⋅ 3.14 ⋅ 2² ⋅ √ 5² — 2² = ⅓ ⋅ 12.56 ⋅ √ 21 ≈ 4.19 ⋅ 4.58 ≈ 19.19 см³

Объём конуса через радиус и высоту

Чему равен объём конуса V, если радиус его основания r, а высота h?

Формула

Пример

Для примера посчитаем объём конуса, у которого высота h = 6 см, а радиус основания r = 3 см:

V = ⅓ ⋅ 3.14 ⋅ 3² ⋅ 6 = 169.56 /3 = 56.52 см³

Объём конуса через угол раствора (α) и радиус

Чему равен объём конуса V, если угол раствора α, а радиус основания r?

Формула

Пример

Для примера посчитаем объём конуса, имеющего угол раствора α = 30° и радиус основания r = 2 см:

V = ⅓ ⋅ 3.14 ⋅ 2³ /tg(30/2) ≈ 1,0467 ⋅ 8 / 0.2679 ≈ 31.25 см³

Объём конуса через угол β и радиус

Чему равен объём конуса V, если известны угол β и радиус основания r?

Формула

Пример

Для примера посчитаем объём конуса, имеющего угол β = 20° и радиус основания r = 3 см:

V = ⅓ ⋅ 3.14 ⋅ 3³ /tg 20 ≈ 1,0467 ⋅ 27 / 0.36397 ≈ 77.64 см³

Читайте также:  Как измеряется объем стакана

Объём конуса через угол γ и радиус

Чему равен объём конуса V, если известны угол γ и радиус основания r?

Формула

Пример

Для примера посчитаем объём конуса, имеющего угол γ = 45° и радиус основания r = 2 см:

V = ⅓ ⋅ 3.14 ⋅ 2³ ⋅ tg 45 ≈ 1,0467 ⋅ 8 ⋅ 1 ≈ 8.37 см³

Источник

Формула объема конуса

Конус — тело, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.

Круглый конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов, поэтому круглый конус называют также конусом вращения.

Связанные определения для конуса

Образующая конуса. Отрезок, соединяющий вершину и границу основания, называется образующей конуса.

Образующая поверхность конуса. Объединение образующих конуса называется образующей (или боковой) поверхностью конуса.

Коническая поверхность. Образующая поверхность конуса является конической поверхностью.

Высота конуса (H). Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса.

Угол раствора конуса. Угол раствора конуса — угол между двумя противоположными образующими (угол при вершине конуса, внутри конуса).

Прямой конус. Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым. При этом прямая, соединяющая вершину и центр основания, называется осью конуса.

Косой (наклонный) конус. Косой (наклонный) конус — конус, у которого ортогональная проекция вершины на основание не совпадает с его центром симметрии.

Круговой конус. Круговой конус — конус, основание которого является кругом.

Прямой круговой конус. Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой, содержащей катет (эта прямая представляет собой ось конуса).

Эллиптическим конус. Конус, опирающийся на эллипс, параболу или гиперболу, называют соответственно эллиптическим, параболическим и гиперболическим конусом (последние два имеют бесконечный объём).

Усечённый конус. Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом, или коническим слоем.

Объем прямого углового конуса

Конус — это геометрическое тело, которое образовано вращением прямоугольного треугольника около одного из его катетов.

Первый способ вычисления объема конуса

Объем конуса равен одной трети произведения площади основания на высоту

где:
V — объем конуса
S — площадь основания конуса
H — высота конуса

Второй способ вычисления объема конуса

Объем конуса равен одной трети произведения числа пи (3.1415) на квадрат радиуса основания на высоту.

\[ \LARGE V = \frac <3>\pi r^2 \]

где:
V — объем конуса
H — высота конуса
π — число пи (3.1415)
r — радиус конуса

Калькулятор объема конуса

Объем усеченного конуса

Усеченный конус получится, если в конусе провести сечение, параллельное основанию. Тело ограниченное этим сечением, основанием и боковой поверхностью конуса называется усеченным конусом.

Читайте также:  Как найти объем параллелепипеда с десятичными дробями

Первый способ вычисления объема усеченного конуса

Объем усеченного конуса вычисляется по формуле:

\[ \LARGE V = \frac<1> <3>\left( H\cdot S_2 + h \cdot s_1 \right) \]

где:
V — объем конуса
h — расстояния от плоскости верхнего основания до вершины
H — расстояния от плоскости нижнего основания до вершины
S1 — площадь верхнего (ближнего к вершине) основания
S2 — площадь нижнего основания

Второй способ вычисления объема усеченного конуса

Объем усеченного конуса вычисляется по формуле:

\[ \LARGE V = \frac<1> <3>\pi h \left( R^2 + R \cdot r + r^2 \right) \]

где:
V — объем конуса
h — высота конуса
R — радиус нижнего основания
r — радиус верхнего основания

Источник

КОНУС формулы объема, площади поверхности

Онлайн-калькулятор

Общее определение конуса

Конус – это тело, образованное совокупностью всех лучей, исходящих из точки пространства и пересекающих плоскость.

Точка, из которой лучи исходят, получила название вершины конуса. В случае, когда основанием конуса является многоугольник, он превращается в пирамиду.

Рассмотрим некоторые важные понятия.

Образующей конуса называется отрезок, который соединяет любую точку границы основания конуса, с его вершиной.
Высотой конуса является перпендикуляр, который опущен из вершины к основанию тела.

Конус бывает нескольких типов:

Прямой, если его основание – одна из таких фигур, как эллипс или круг. Обязательным условием является проецирование вершины конуса в центр основания.

Косой – у него центр фигуры, которая находится в основании, не совпадает с проекцией вершины на это самое основание.

Круговой – отталкиваясь от названия, понятно, что в его основании лежит круг.

Усеченный – область конуса, лежащая между основанием и сечением плоскости, которая параллельна основанию и пересекает данный конус.

Связанные определения для конуса

Образующая конуса. Отрезок, соединяющий вершину и границу основания, называется образующей конуса.

Образующая поверхность конуса. Объединение образующих конуса называется образующей (или боковой) поверхностью конуса.

Коническая поверхность. Образующая поверхность конуса является конической поверхностью.

Высота конуса (H). Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса.

Угол раствора конуса. Угол раствора конуса – угол между двумя противоположными образующими (угол при вершине конуса, внутри конуса).

Прямой конус. Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым. При этом прямая, соединяющая вершину и центр основания, называется осью конуса.

Косой (наклонный) конус. Косой (наклонный) конус – конус, у которого ортогональная проекция вершины на основание не совпадает с его центром симметрии.

Круговой конус. Круговой конус – конус, основание которого является кругом.

Прямой круговой конус. Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой, содержащей катет (эта прямая представляет собой ось конуса).

Читайте также:  Как вычислить объем правильной шестиугольной призмы

Эллиптическим конус. Конус, опирающийся на эллипс, параболу или гиперболу, называют соответственно эллиптическим, параболическим и гиперболическим конусом (последние два имеют бесконечный объём).

Усечённый конус. Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом, или коническим слоем.

Формула образующей конуса

Образующую конуса можно найти, зная ее высоту H и радиус R:

Источник

Нахождение объема конуса: формула и задачи

В данной публикации мы рассмотрим, каким образом можно посчитать объем прямого кругового конуса и разберем примеры решения задач.

Формула вычисления объема

1. Через площадь основания и высоту

Объем (V) конуса равняется одной третьей произведения его высоты на площадь основания:

2. Через радиус основания и высоту

Как мы знаем, основанием конуса является круг, площадь которого вычисляется по формуле: S = πR 2 .

Следовательно, формулу для вычисления объема конуса можно представить в виде:

Т.е. объем конуса равняется одной третьей произведения его высоты на число π и на радиус основания в квадрате.

Примечание: в расчетах значение числа π округляется до 3,14.

Формула для нахождения объема усеченного конуса представлена в отдельной публикации.

Примеры задач

Задание 1
Найдите объем конуса, если известна площадь его основания – 50,24 см 2 , а также, высота – 9 см.

Решение:
Применим первую формулу, подставив в нее заданные значения:

Задание 2
Высота конуса равна 7 см, а его радиус – 3 см. Найдите объем фигуры.

Решение:
Воспользовавшись второй, более расширенной, формулой получаем:

Источник

Конус формулы

Конус – это геометрическая фигура, полученная вращением прямоугольного треугольника вокруг одного из катетов. У каждого конуса есть основание и боковая поверхность.

Любой конус характеризуется высотой h (осевой линией), радиусом r и образующей l (см. рисунок). Именно эти характеристики используются в формулах конуса при вычислении объема, площади поверхности и площади боковой поверхности.

Высота конуса (осевая линия) – это перпендикуляр, проведенный из вершины конуса к основанию.

Радиус конуса – это радиус его основания.

Образующая конуса – это отрезок, который соединяет вершину конуса с любой точкой, лежащей на линии окружности основания.

Формула образующей конуса

Образующую конуса можно найти, зная ее высоту H и радиус R:

Формула площади боковой поверхности конуса

Площадь боковой поверхности конуса можно получить, зная его радиус R и образующую L:

Формула площади основания конуса

Площадь основания конуса можно вычислить по его радиусу R:

Формула площади конуса

Площадь поверхности конуса можно получить, сложив площадь боковой поверхности и площадь основания конуса:

S = Sбок.пов + Sосн = πRL + πR 2

Формула объема конуса

Объем конуса можно вычислить, зная его высоту H и площадь основания:

V = 1/3 ⋅ Sосн ⋅ H = 1/3πR 2 H

Поделитесь статьей с одноклассниками «КОНУС формулы объема, площади поверхности».

Источник

Поделиться с друзьями
Объясняем