Как узнать высоту равнобедренного треугольника если известно основание

Как ⭐ найти высоту треугольника

Определение

Одной из таких характеристик является высота треугольника. Высота – это перпендикуляр, проведенный из вершины треугольника к его противоположной стороне. Вершиной называют одну из трех точек, которые вместе с тремя отрезками составляют треугольник.

Определение высоты треугольника может звучать и так: высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.

Это определение звучит сложнее, но оно точнее отражает ситуацию. Дело в том, что в тупоугольном треугольнике не получится провести высоту внутри треугольника. Как видно на рисунке 1, высота в этом случае получается внешней. Кроме того, нестандартной ситуацией является построение высоты в прямоугольном треугольнике. В этом случае, две из трех высот треугольника будут проходить через катеты, а третья от вершины к гипотенузе.

Как правило, высоту треугольника обозначают буквой h. Также обозначается высота и в других фигурах.

Видео

Свойства равносторонней фигуры

При решении задач, связанных с нахождением высоты в равностороннем треугольнике, часто приходится использовать его свойства. Зная их, найти нужные параметры будет несложно. Тем более что все они связаны с главной особенностью фигуры — равенством его всех сторон.

Равностороннее тело с тремя углами обладает следующими особенностями:

  • в нём все углы одинаковые и равны 60 градусов;
  • середина пересечения отрезков, совпадающих с высотой, биссектрисой и медианой, является центром геометрического тела;
  • радиус описанной окружности превышает радиус вписанной в 2 раза;
  • в равностороннем треугольнике длины всех элементов выражаются через длину стороны.

Эти свойства очевидны. Если начертить треугольник с равными сторонами и вписать его в окружность, за центр можно принять точку O, при этом радиус описанного круга будет OK. Тогда линия, проведённая из неё к вершине, будет радиусом. Пусть конечная точка будет B. Но так как место пересечения является общим и для высот и медиан, из свойства последних можно сделать вывод, что в точке линия делится в отношении 2 к 1. Отсчёт следует вести с вершины треугольника. Значит: OB = 2 * OK.

Из основных формул, которые используются при вычислениях, в первую очередь нужно запомнить:

  • радиус описанной окружности: R = (a * √3) / 3;‎
  • диаметр вписанного круга: r = (a * √3) / 6;
  • медиана: h = (a * √3) / 2;
  • площадь: s = (a2 * √3) / 4;
  • периметр: p = 3 * a.

Если рассмотреть треугольник ABC с проведённой высотой BN, можно утверждать, что грань АВ = ВС = АС = AN /2 = NC /2. Так как фигура ABN является копией BNC в зеркальном отражении, разделённые углы у вершины будут одинаковыми, а и их разворот составлять 30 градусов. Из этого следует, что угол A равен 60 градусам, значит, отрезок BN = AB * sin 60 = (AB * √3) / 2.

Читайте также:  Около правильного многоугольника описана окружность радиусом 12 см радиус вписанной окружности равен

Зная длину медианы (высоты), вычислить другие параметры треугольника не составит труда. Например, периметр, P = 2 √3 * h; площадь — S = (h * 2) / √3.

При этом замечательным свойством является ещё и то, что ортоцентр одновременно будет в фигуре и центром тяжести (центроидом), поэтому точка пересечения высот и делит отрезок в отношении 2 к 1.

Высота треугольника по двум сторонам и радиусу описанной окружности

Рассмотрим треугольник на рисунке 6. Из теоремы синусов имеем:

(5)
(6)

Далее, из теоремы синусов имеем:

(7)

Подставляя (6) в (7), получим:

(8)

Отметим, что радиус описанной окружности должен удовлетворять следующему неравенству:

\(\small \max (b,c) ≤2R Пример 3. Известны стороны треугольника: \( \small b=7, \) \( \small c= 3 \) и радиус описанной окружности \( \small R=4. \) Найти высоту треугольника, отпущенная на сторону \( \small a. \)

Решение: Проверим сначала условие (9):

\(\small \max (7,3) ≤2 \cdot 4 Ответ: \( \small 2\frac<5><8>. \)

Свойства высоты в равностороннем треугольнике

Равносторонний треугольник — это треугольник, стороны которого, углы, высоты, медианы, оси симметрии и биссектрисы будут равны.

Такой треугольник является частным примером равнобедренного треугольника, но не наоборот.

Высоту в таком треугольнике можно найти с помощью следующей формулы:

h=a32 где а — сторона равностороннего треугольника.

Главным свойством, которым обладает высота равностороннего треугольника, является тот факт, что она равна медиане и биссектрисе:

а — сторона правильного равностороннего треугольника.

В треугольнике проведены три высоты

Как и для медиан, и для биссектрис, для высот треугольника верно следующее утверждение:

В любом треугольнике три высоты или их продолжения пересекаются в одной точке.

Доказывать это утверждение мы здесь, пожалуй, не будем.

Давай просто нарисуем, чтобы понять, как это бывает «высоты или их продолжения».

1. Треугольник остроугольный – тогда пересекаются сами высоты:

2. Треугольник тупоугольный – тогда пересекаются продолжения высот:

Что же полезного мы ещё не обсудили?

Задача наподобие треугольников

В прямоугольном треугольнике ABC (угол C = 90) проведена высота CD. Определите CD, если AD = 9 см, BD = 16 см

Треугольники ABC, ACD и CBD подобны между собой . Это непосредственно следует из второго признака подобия (равенство углов в этих треугольниках очевидно).

Прямоугольные треугольники — единственный вид треугольников, которые можно разрезать на два треугольника, подобных между собой и исходному треугольнику.

Обозначения этих трех треугольников в таком порядке следования вершин: ABC, ACD, CBD. Тем самым мы одновременно показываем и соответствие вершин. (Вершине A треугольника ABC соответствует также вершина A треугольника ACD и вершина C треугольника CBD и т. д.)

Треугольники ABC и CBD подобны. Значит:

AD/DC = DC/BD, то есть

Высота треугольника по основанию и площади

Пусть известны сторона треугольника и площадь. Найти высоту треугольника, отпущенная на известную сторону (Рис.5).

Решение. Площадь треугольника по основанию и высоте вычисляется из формулы:

.
. (1)

Пример 1. Сторона треугольника равна \( \small a=5 \) а площадь \( \small S=7. \) Найти высоту треугольника.

Применим формулу (1). Подставляя значения \( \small a \) и \( \small S \) в (1), получим:

Ответ:

Остроугольный треугольник и высота

Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:

Что видим теперь? Ещё подобные треугольники!

Как от двух линий вообще могут получиться столько подобных треугольников?!

Но тем не менее…

Видишь, какое богатство? И всё это может быть использовано в задачах!

Ну вот, теперь ты узнал что-то новенькое про высоты треугольника.

Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее — которое с косинусом, и то, что угол между высотами равен углу между сторонами…

Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести.

И тогда, если ты будешь точно знать, например, что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!

Примеры задач

Задача 1 Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Задача 2 Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Источник

Высота и угол «α» равнобедренного треугольника

Свойства

Высота равнобедренного треугольника, которая лежит под прямым углом к основанию, создает внутри еще два одинаковых прямоугольных треугольника, являясь катетом в каждом из них. Второй катет такого треугольника представляет собой половину основания, так как эта высота является одновременно медианой и биссектрисой, а гипотенузой будет боковая сторона равнобедренного треугольника. Соответственно, зная высоту и угол α при основании, через прямоугольный треугольник можно узнать стороны равнобедренного треугольника. (рис.88.2) a=h/sin⁡α b=2h/tan⁡α

Поскольку сумма всех углов в треугольнике равна 180 градусам, следовательно, угол при вершине будет равен разности 180 градусов и двух углов при основании. β=180°-2α

Периметр равнобедренного треугольника через высоту и угол α равен сумме двух отношений высоты к синусу угла и двух отношений высоты к тангенсу. Площадь, в свою очередь, преобразовывается в квадрат высоты, деленный на тангенс. P=2a+b=2h/sin⁡α +2h/tan⁡α S=hb/2=h^2/tan⁡α

Чтобы найти высоту, опущенную на боковую сторону равнобедренного треугольника (любую, так как они одинаковы), можно воспользоваться готовой формулой через стороны треугольника, заменив их на тригонометрические отношения и упростив выражение. Аналогично вычисляются медианы и биссектрисы через высоту. m_a=√(a^2+2b^2 )/2=√((h/sin⁡α )^2+2(2h/tan⁡α )^2 )/2=(h√(1/cos⁡α +8))/(2 tan⁡α ) h_a=(b√((4a^2-b^2)))/2a=(b√((4(h/sin⁡α )^2-(2h/tan⁡α )^2)))/(2 h/sin⁡α )=b sin^2⁡α l_a=(b√(a(2a+b) ))/(a+b)=(2h/tan⁡α √(h/sin⁡α (2 h/sin⁡α +2h/tan⁡α )))/(h/sin⁡α +2h/tan⁡α )=(2h√(2+2/cos⁡α ))/(tan⁡α+2 sin⁡α )

Чтобы вычислить среднюю линию, необходимо разделить на два ту сторону треугольника, которая ей параллельна. Поскольку ни одна из сторон не известна, то средняя линия, параллельная основанию, равна высоте, деленной на тангенс угла α, а средняя линия, параллельная боковой стороне равна высоте, деленной на два синуса угла α. (рис.88.5) M_b=b/2=h/tan⁡α M_a=a/2=h/(2 sin⁡α )

Чтобы вычислить радиус вписанной в равнобедренный треугольник окружности, нужно подставить вместо сторон a и b в формулу отношения высоты и тангенса или синуса соответственно, а затем упростить выражение (рис.88.6) r=b/2 √((a-2b)/(a+2b))=h/tan⁡α √((h/sin⁡α -2 2h/tan⁡α )/(h/sin⁡α +2 2h/tan⁡α ))=h/tan⁡α √((1-4 cos⁡α)/(1+4 cos⁡α ))

Радиус окружности, описанной вокруг равнобедренного треугольника также зависит от обеих сторон – основания и боковой стороны, поэтому его формула видоизменяется аналогично радиусу вписанной окружности. (рис.88.7) R=a^2/√(4a^2-b^2 )=(h/sin⁡α )^2/√(4(h/sin⁡α )^2-(2h/tan⁡α )^2 )=h/(2 sin^2⁡α )

Источник

Как посчитать высоту равнобедренного треугольника

Онлайн калькулятор

Чтобы вычислить высоту равнобедренного треугольника вам нужно знать следующие параметры (либо-либо):

  • длину двух равных сторон (a) и длину основания (b)
  • длину двух равных сторон (a) и угол α
  • длину двух равных сторон (a) и угол β
  • длину основания (b) и угол α
  • длину основания (b) и угол β

Введите их в соответствующие поля и получите результат.

Если известны длина стороны а и основания b

Чему равна высота h равнобедренного треугольника если длина сторон , а длина основания

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и длина основания b?

Формула

h = √ a 2 — ( b /2) 2

Пример

Если сторона a = 10 см, а сторона b = 5 см, то:

h = √ 10 2 — ( 5 /2) 2 = √ 100 — 6.25 ≈ 9.68 см

Если известны длина стороны а и угол α

Чему равна высота h равнобедренного треугольника если длина сторон , а угол

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол α?

Формула

Пример

Если сторона a = 5 см, а ∠α = 45°, то:

h = 5⋅sin 45 ≈ 3,53 см

Если известны длина стороны а и угол β

Чему равна высота h равнобедренного треугольника если длина сторон , а угол

Чему равна высота h у равнобедренного треугольника если известны длина стороны a и угол β?

Формула

Пример

Если сторона a = 5 см, а ∠β = 30°, то:

Если известны длина стороны b и угол α

Чему равна высота h равнобедренного треугольника если длина основания , а угол

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол α?

Формула

Пример

Если сторона b = 20 см, а ∠α = 35°, то:

Если известны длина стороны b и угол β

Чему равна высота h равнобедренного треугольника если длина основания , а угол

Чему равна высота h у равнобедренного треугольника если известны длина стороны b и угол β?

Источник

Читайте также:  54006 бассейн семейный прямоугольный 262 175 51см
Поделиться с друзьями
Объясняем