Как узнать радиус окружности через треугольник

Содержание
  1. Радиус описанной окружности
  2. Радиус описанной около треугольника окружности
  3. Нахождение радиуса описанной вокруг треугольника окружности
  4. Формулы вычисления радиуса описанной окружности
  5. Произвольный треугольник
  6. Прямоугольный треугольник
  7. Равносторонний треугольник
  8. Примеры задач
  9. Все формулы для радиуса вписанной окружности
  10. Радиус вписанной окружности в треугольник
  11. Радиус вписанной окружности в равносторонний треугольник
  12. Радиус вписанной окружности равнобедренный треугольник
  13. Как найти радиус вписанной окружности треугольника
  14. Окружность, вписанная в треугольник — как найти радиус
  15. Свойства вписанной в треугольник окружности
  16. Первое свойство
  17. Второе свойство
  18. Третье свойство
  19. Формулы вычисления радиуса вписанной окружности
  20. Произвольный треугольник
  21. Прямоугольный треугольник
  22. Равнобедренный треугольник
  23. Равносторонний треугольник
  24. Как найти через высоту или стороны, примеры решения

Радиус описанной окружности

Удобно, когда все формулы, по которым можно найти радиус описанной окружности для треугольника, квадрата, многоугольника размещены на одной странице.

Формулы для нахождения радиуса описанной окружности треугольника (верны для треугольника любого вида):

где a, b, c — длины сторон треугольника, α, β, γ — противолежащие этим сторонам углы, S — площадь треугольника.

у остроугольного треугольника — внутри треугольника;

у прямоугольного — на середине гипотенузы;

у тупоугольного — вне треугольника, напротив тупого угла.

Радиус описанной окружности для прямоугольного треугольника

Радиус описанной около прямоугольного треугольника окружности равен половине гипотенузы:

Окружность, описанная около многоугольника

Если около многоугольника можно описать окружность, ее центр является точкой пересечения серединных перпендикуляров к сторонам многоугольника.

Радиус описанной около многоугольника окружности находят как радиус окружности, описанной около треугольника. Для этого берут любые три вершины многоугольника.

Например, для пятиугольника ABCDE можно взять любой из треугольников ABC, ABD, ABE, BCD, BCE, CDE, ACD, ACE, ADE, BDE.

Радиус окружности, описанной около правильного многоугольника

Формула радиуса описанной окружности для правильного многоугольника

где a — длина стороны многоугольника, n — количество его сторон.

Частные случаи — правильный треугольник, правильный четырехугольник (то есть квадрат), правильный шестиугольник.

Радиус описанной окружности правильного треугольника

Формула радиуса описанной окружности для правильного треугольника

Если без иррациональности в знаменателе —

У правильного треугольника радиус описанной окружности в два раза больше радиуса вписанной окружности:

Радиус описанной окружности квадрата

Формула радиуса описанной окружности для квадрата

Если без иррациональности в знаменателе —

Радиус описанной окружности правильного шестиугольника

Формула радиуса описанной окружности для правильного шестиугольника

Источник

Радиус описанной около треугольника окружности

Радиус описанной около треугольника окружности можно найти по одной из двух общих формул.

Кроме того, для правильного и прямоугольного треугольников существуют дополнительные формулы.

Читайте также:  Около окружности радиуса 12 см описана равнобедренная трапеция периметр которой равен 100 см найдите

Радиус описанной около произвольного треугольника окружности

То есть радиус описанной окружности равен отношению длины стороны треугольника к удвоенному синусу противолежащего этой стороне угла.

В общем виде эту формулу записывают так:

То есть чтобы найти радиус описанной около треугольника окружности, надо произведения длин сторон треугольника разделить на четыре площади треугольника.

Если площадь треугольника находить по формуле Герона

где p — полупериметр,

то получим формулу радиуса описанной около треугольника окружности через длины сторон:

Обе эти формулы можно применить к треугольнику любого вида. Следует только учесть положение центра.

Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника, напротив тупого угла.

Радиус окружности, описанной около прямоугольного треугольника

Формула:

То есть в прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

Обычно гипотенузу обозначают через c (AB=c) и формулу записывают так:

Радиус окружности, описанной около правильного треугольника

Если без иррациональности в знаменателе, то

В равностороннем треугольнике радиус описанной окружности в два раза больше радиуса вписанной окружности:

Источник

Нахождение радиуса описанной вокруг треугольника окружности

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, описанной около произвольного (любого), прямоугольного или равностороннего треугольника. Также разберем примеры решения задач для закрепления представленного теоретического материала.

Формулы вычисления радиуса описанной окружности

Произвольный треугольник

Радиус окружности, описанной вокруг любого треугольника, рассчитывается по формуле:

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, описанной около прямоугольного треугольника, равен половине его гипотенузы или высоте, проведенной к гипотенузе.

Равносторонний треугольник

Радиус описанной около правильного треугольника окружности вычисляется по формуле:

где a – сторона треугольника.

Примеры задач

Задание 1
Дан треугольник со сторонами 4, 6 и 9 см. Найдите радиус описанной около него окружности.

Решение
Для начала нам необходимо найти площадь треугольника. Т.к. нам известны длины всех его сторон, можно применить формулу Герона:

Теперь мы можем воспользоваться первой формулой из перечисленных выше для расчета радиуса круга:

Задание 2
Дан треугольник, у которого известны две стороны из трех: 6 и 8 см. Найдите радиус описанной вокруг него окружности.

Решение
Треугольник со сторонами 6 и 8 см может быть только прямоугольным, причем известные по условиям задачи стороны являются его катетами. Таким образом, мы можем найти гипотенузу фигуры, воспользовавшись теоремой Пифагора:

Как мы знаем, радиус круга, описанного вокруг прямоугольного треугольника, равняется половине его гипотенузы, следовательно: R = 10 : 2 = 5.

Источник

Читайте также:  Как рассчитать ткань на скатерть для прямоугольного стола

Все формулы для радиуса вписанной окружности

Радиус вписанной окружности в треугольник

a , b , c — стороны треугольника

p — полупериметр, p=( a + b + c )/2

Формула радиуса вписанной окружности в треугольник ( r ):

Радиус вписанной окружности в равносторонний треугольник

a — сторона треугольника

r — радиус вписанной окружности

Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

α — угол при основании

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :

2. Формулы радиуса вписанной окружности если известны: сторона и высота

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :

Источник

Как найти радиус вписанной окружности треугольника

Окружность, вписанная в треугольник — как найти радиус

Вписанной в треугольник окружностью называют такую окружность, которая занимает внутреннее пространство геометрической фигуры, соприкасаясь со всеми ее сторонами.

В таком случае грани треугольника представляют собой касательные к этой окружности. Сама геометрическая фигура с тремя углами считается описанной вокруг рассматриваемой окружности.

Свойства вписанной в треугольник окружности

Окружность, которую вписали в треугольник, обладает определенными свойствами. Основные из них можно записать таким образом:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  1. Центр окружности, которую вписали в треугольник, совпадает с точкой пересечения биссектрис этой геометрической фигуры.
  2. Во внутреннее пространство любого треугольника можно вписать лишь одну окружность.
  3. Формула радиуса окружности, который вписали во многоугольник с тремя углами, будет иметь такой вид:

В представленной формуле радиуса окружности использованы следующие величины:

  • S – является площадью треугольника;
  • р – представляет собой полупериметр геометрической фигуры;
  • a, b, c – являются сторонами треугольника.

Перечисленные свойства необходимо доказать.

Первое свойство

Требуется доказать, что центр окружности, которую вписали в фигуру с тремя углами, совпадает с точкой пересечения биссектрис.

Доказательство построено в несколько этапов:

  1. Необходимо опустить из центральной точки окружности перпендикулярные прямые OL, OK и OM, которые опускаются на стороны треугольника АВС. Из вершин треугольника следует провести прямые, соединяющие их с центром фигуры OA, OC и OB.
Читайте также:  Как посчитать площадь трапеции по клеткам

Данное свойство окружности доказано.

Второе свойство

Необходимо представить доказательства свойства окружности, согласно которому в любой треугольник можно вписать окружность, причем только одну.

Доказательство состоит из нескольких этапов:

  1. Окружность получится вписать в треугольник в том случае, когда существует точка, удаленная на равные расстояния от сторон геометрической фигуры.
  2. Можно построить пару биссектрис ОА и ОС. Из точки, в которой они пересекаются, необходимо опустить перпендикулярные прямые OK, OL и OM ко всем граням многоугольника с тремя углами ABC.

Третье свойство

Требуется доказать, что радиус окружности, которую вписали в геометрическую фигуру с тремя углами, представляет собой отношение площади треугольника к полупериметру:

Кроме того, необходимо представить доказательства следующему равенству:

Свойство окружности доказано.

Формулы вычисления радиуса вписанной окружности

Параметры окружности, которую вписали в геометрическую фигуру с тремя углами, можно рассчитать с помощью стандартных формул. Радиус окружности будет определен в зависимости от типа треугольника.

Произвольный треугольник

Определить радиус окружности, которая вписана в какой-либо треугольник, можно, как удвоенную площадь треугольника, поделенную на его периметр.

В данном случае, a, b, c являются сторонами геометрической фигуры с тремя углами, S – ее площадь.

Прямоугольный треугольник

Радиус окружности, которую вписали в треугольник с прямым углом, представляет собой дробь с числителем в виде суммы катетов за минусом гипотезы и знаменателем, равным числу 2.

В формуле a и b являются катетами, c – гипотенузой треугольника.

Равнобедренный треугольник

Радиус окружности, которая вписана в равнобедренный треугольник, определяют по формуле:

В этом случае a – боковые стороны, b – основание треугольника.

Равносторонний треугольник

Расчет радиуса окружности, которая вписана в правильный или равносторонний треугольник, выполняют по формуле:

где a – сторона геометрической фигуры с тремя углами.

Как найти через высоту или стороны, примеры решения

Задача 1

Имеется геометрическая фигура с тремя углами, стороны которой составляют 5, 7 и 10 см. Требуется определить радиус окружности, которая вписана в этот треугольник.

Решение

В первую очередь необходимо определить, какова площадь треугольника. Для этого можно воспользоваться формулой Герона:

Затем применим формулу для расчета радиуса круга:

Ответ: радиус окружности составляет примерно 1,48 см.

Задача 2

Необходимо рассчитать радиус окружности, которая вписана в равнобедренный треугольник. Боковые стороны геометрической фигуры составляют 16 см, а основание равно 7 см.

Решение

Следует использовать подходящую формулу для расчета радиуса, подставив в нее известные величины:

Ответ: радиус окружности примерно равен 2,8 см.

Источник

Поделиться с друзьями
Объясняем