Как узнать площадь трапеции по ее углами

Площадь трапеции

Площадь трапеции, формулы расчета, определение,
способы найти площадь, нахождение площади
через величины и примеры площади трапеции.

Все формулы расчета площади трапеции
через основания и угол, периметр, радиус,
синус и две стороны, диагональ,
высоту, среднюю линию.

Площадь трапеции, можно измерить, в единицах
измерения в квадрате: мм 2 , см 2 , м 2 и км 2 и так далее.

Площадь трапеции через окружность вписанную можно
найти, зная радиус окружности вписанной в трапецию
и некоторые другие величины.

Формулы площади трапеции

Площадь любых трапеций

Ⅰ. Площадь трапеции через основания и высоту:


\[ S = \frac <2>\cdot h \]
a,b — основания трапеции;
h — высота трапеции;

Ⅱ. Площадь трапеции через высоту и среднюю линию:


\[ S = mh \]
m — средняя линия трапеции;
h — высота трапеции;

Ⅲ. Площадь трапеции через диагонали и угол между ними:

\[ S =\frac<1><2>d_1d_2 \cdot \sin \alpha \]
\( d_1, d_2 \) ​​- диагонали трапеции;
sin α — синус угла альфа в трапеции;

Ⅳ. Площадь трапеции через периметр, высоту и боковые стороны:

\[ S = \frac<2>h \]
P — периметр трапеции;
c,d — боковые стороны трапеции;
h — высота трапеции;

Ⅴ. Площадь трапеции через основания и боковые стороны:
\[ S = \frac <2>\cdot \sqrt<2a-2b>)^2> \]
a,b — основания трапеции;
с,d — боковые стороны трапеции;

Ⅵ. Площадь трапеции через основания и углы:

a,b — основания трапеции;
α — угол при основании a в трапеции;
β — угол при основании b в трапеции;
sin α — синус угла альфа в трапеции;
sin β — синус угла бетта в трапеции;

Площадь равнобедренной трапеции

Ⅰ. Площадь трапеции через синус угла, среднюю линию и боковую сторону:

Читайте также:  Как разбить на зоны прямоугольную комнату

\[ S = ld \cdot \sin α \]

l — средняя линия равнобедренной трапеции;
d — боковая сторона равнобедренной трапеции;
α — угол альфа при боковой стороне d равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;

Ⅱ. Площадь трапеции через диагонали и синус угла:

\[ S = \frac <2>\cdot \sin α \]

d — диагональ равнобедренной трапеции;
α — угол между двумя диагоналями в равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;

Ⅲ. Площадь трапеции через радиус вписанной окружности и основания:

r — радиус вписанной окружности равнобедренной трапеции;
a, b — основания равнобедренной трапеции;

Ⅳ. Площадь трапеции через основания:

a, b — основания равнобедренной трапеции;

Ⅴ. Площадь трапеции через основания и среднюю линию:

l — средняя линия равнобедренной трапеции;
a, b — основания равнобедренной трапеции;

Ⅵ. Площадь трапеции через синус угла и стороны:

\[ S = c \cdot \sin α \cdot (a-c \cdot \cos α) \]

a — нижнее основание равнобедренной трапеции;
с — боковая сторона равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;
cos α — косинус угла альфа в равнобедренной трапеции;

Ⅶ. Площадь трапеции через угол и радиус вписанной окружности:

r — радиус вписанной окружности равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;

Определения трапеции

Трапеция — это четырехугольник, у которого две
стороны параллельны а две другие нет.

Зная углы трапеции, можно определить, к какому виду
она относится. Всего различают три вида трапеций:

  • Обычная / стандартная трапеция: четыре угла и четыре стороны не равны.
  • Равнобедренная / равнобочная / равнобоковая трапеция:
    два угла при основании равны, две боковые стороны равны.
  • Прямоугольная / прямаятрапеция: один из углов прямой.

Площадь равнобедренной, прямоугольной трапеции,
можно найти через формулы площади обычной трапеции.

Формул, с помощью которых, можно найти площадь трапеции
через описанную окружность около трапеции, не существует.

Элементы трапеции

Любая трапеция является четырехугольником,
поэтому у трапеции 4 угла и 4 стороны.

Основание трапеции — это сторона, противолежащая
сторона которой параллельна.

Боковая сторона трапеции — это сторона, противолежащая
сторона которой не параллельна.

Средняя линия трапеции — это отрезок, соединяющий
середины боковых сторон трапеции.

Читайте также:  Как решить площадь прямоугольного параллелепипеда

Диагональ трапеции — это отрезок, соединяющий две
вершины, которые лежат в разных концах трапеции.

Высота трапеции — это отрезок, соединяющий меньшее основание с большим,
образуя при этом два угла по 90 градусов на большей стороне.

Основания у трапеции не могут быть никогда равны.
Боковые стороны могут быть равны только,
если трапеция — равнобедренная.

Площадь трапеции — это площадь геометрической фигуры,
у которой четыре стороны и четыре угла, причем только
две стороны параллельны а остальные нет.

Источник

Нахождение площади трапеции: формула и примеры

Трапеция – это геометрическая фигура; четырехугольник, имеющий 2 параллельные и 2 непараллельные стороны.

Формулы вычисления площади

По длине оснований и высоте

Площадь трапеции (S) равняется половине суммы ее оснований, умноженной на высоту, проведенную к ним.

Через длины всех сторон (Формула Герона)

Для вычисления площади трапеции необходимо знать длины всех ее сторон:

p – полупериметр трапеции, считается по формуле:

Через диагонали и угол между ними

Площадь трапеции равна половине произведения диагоналей и синуса угла между ними. Вычисляется по одной из двух формул ниже:

Примеры задач

Задание 1
Найдите площадь трапеции, если ее основания равны 4 и 7 см, а высота – 4 см.

Решение:
Используем первую формулу, рассмотренную выше: S = 1 /2 * (4 см + 7 см) * 4 см = 22 см 2 .

Задание 2
Найдите площадь трапеции, если ее основания равны 6 и 12 см, а боковые стороны – 8 и 10 см.

Решение:
Т.к. нам известны длины всех сторон, применим формулу Герона:
S = (6+12) / |6-12| * √ (18-6)(18-12)(18-6-8)(18-6-10) = 18 / 6 * √ 576 = 72 см 2 .

Источник

Площадь прямоугольной трапеции

Время чтения: 9 минут

Прямоугольная трапеция особенна тем, что имеет сторону, перпендикулярную двум неравным основаниям фигуры. Важным признаком является и наличие двух прямых смежных углов. Поиск площади прямоугольной трапеции возможен по любой из общих формул, предназначенных для данного вычисления любых трапеций (прямоугольной, равнобедренной, произвольной).

5 способов вычисления:

  1. через три стороны трапеции;
  2. умножив высоту трапеции на среднюю линию;
  3. через основание и углы;
  4. через диагонали и углы между ними;
  5. через четыре стороны.
Читайте также:  Замена трапеции шкода рапид 2016

Вычисление площади трапеции через три её стороны (основания и перпендикулярную сторону) подходит только для прямоугольных трапеций.

Площадь прямоугольной трапеции по трём сторонам

Значение высоты прямоугольной трапеции совпадает со значением её стороны, перпендикулярной основаниям фигуры. Площадь такой фигуры можно найти через три известных стороны.

a малое основание;

b – перпендикулярная сторона;

c – большое основание;

h – высота.

Рисунок 1. Прямоугольная трапеция. Высота h.

Если половину суммы малого и большого основания умножить на перпендикулярную сторону трапеции или высоту, в результате получается площадь.

Задача.

Найдите площадь прямоугольной трапеции S, если малое основание a составляется 4,84 см, а большое с – 7,88 см, перпендикулярная основаниям высота b равна 4,64 см.

Решение:

Основываясь на данные о трёх её сторонах, по соответствующей формуле найдём площадь.

Ответ: Площадь прямоугольной трапеции равна 29,51 кв.см.

Площадь прямоугольной трапеции по высоте и средней линии

Для расчета площади потребуются данные о высоте трапеции и линии, проведенной посередине фигуры. Произведение этих величин и составит площадь. Рассмотрим рисунок 2.

\[\boldsymbol=\boldsymbol * \boldsymbol\], где S – площадь фигуры, m – средняя линия, а h – высота, которую можно заменять на перпендикулярную основаниям сторонуb.

Задача.

Найдите площадь прямоугольной трапеции S, зная высоту h – 4,64 см и среднюю линию m – 6,36 см.

Решение:

Найдём площадь трапеции путём умножения известных величин.

Ответ: S = 29,51 кв.см.

Вычисление площади по основаниям и углам

Зная значения оснований трапеции и углов при них, для вычисления площади нужно половину разницы квадратов оснований фигуры умножить на частное из произведения синусов углов при основании и синуса суммы этих углов. Рассмотрим рисунок 3.

\[S=\frac<1> <2>*\left(c^<2>-a^<2>\right) * \frac<\sin (y) * \sin (x)><\sin (y+x)>\], где S – площадь; с – большое основание;a – малое основание;

y, x – первый и второй угол при основании.

Задача.

Как узнать площадь прямоугольной трапеции S по формуле оснований и углов, если малое снование a равно 4,84 см, а большое с – 7,88 см, первый угол при основании y прямой, а второй x равен 56,8 о ?

Решение:

Рассчитаем площадь трапеции, используя данные об основаниях и углах при большом основании.

Источник

Поделиться с друзьями
Объясняем