Как узнать окружность круга если известен диаметр

Содержание
  1. Длина окружности
  2. Как найти длину окружности через диаметр
  3. Как найти длину окружности через радиус
  4. Как вычислить длину окружности через площадь круга
  5. Как найти длину окружности через диагональ вписанного прямоугольника
  6. Как вычислить длину окружности через сторону описанного квадрата
  7. Как найти длину окружности через стороны и площадь вписанного треугольника
  8. Как найти длину окружности через площадь и полупериметр описанного треугольника
  9. Как вычислить длину окружности через сторону вписанного правильного многоугольника
  10. Задачи для решения
  11. Длина окружности круга через диаметр: онлайн-калькулятор
  12. Нахождение длины окружности через диаметр. Онлайн-калькулятор
  13. Длина окружности: онлайн-калькулятор
  14. Расчёт длины окружности
  15. Длина окружности через диаметр
  16. Нахождение длины окружности: формула и задачи
  17. Формула вычисления длины/периметра
  18. Примеры задач
  19. Длина окружности
  20. Формула расчёта длинны окружности
  21. Пример нахождения длинны окружности

Длина окружности

О чем эта статья:

6 класс, 9 класс, ЕГЭ/ОГЭ

Как найти длину окружности через диаметр

Хорда — это отрезок, который соединяет две точки окружности.

Диаметр — хорда, которая проходит через центр окружности. Формула длины окружности через диаметр:

π— число пи — математическая константа, примерно равная 3,14

d — диаметр окружности

Как найти длину окружности через радиус

Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:

π — число пи, примерно равное 3,14

r — радиус окружности

Это две основные формулы для вычисления длины окружности. Ниже мы покажем еще несколько формул, которые вы сможете доказать самостоятельно, пользуясь основными формулами и свойствами геометрических фигур.

Как вычислить длину окружности через площадь круга

Если вам известна площадь круга, вы также можете узнать длину окружности:

π — число пи, примерно равное 3,14

S — площадь круга

Как найти длину окружности через диагональ вписанного прямоугольника

Как измерить окружность, если в нее вписан прямоугольник:

π — число пи, примерно равное 3,14

d — диагональ прямоугольника

Как вычислить длину окружности через сторону описанного квадрата

Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:

π — математическая константа, примерно равная 3,14

a — сторона квадрата

Как найти длину окружности через стороны и площадь вписанного треугольника

Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:

π — математическая константа, она примерно равна 3,14

a — первая сторона треугольника

b — вторая сторона треугольника

c — третья сторона треугольника

S — площадь треугольника

Как найти длину окружности через площадь и полупериметр описанного треугольника

Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.

Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.

π — математическая константа, примерно равная 3,14

S — площадь треугольника

Читайте также:  Трапеция дворника бмв е60

p — полупериметр треугольника

Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.

Формула вычисления длины окружности:

π — математическая константа, примерно равная 3,14

a — сторона многоугольника

N — количество сторон многоугольника

Задачи для решения

Давайте тренироваться! Двигаемся от простого к сложному:

Задача 1. Найти длину окружности, диаметр которой равен 5 см.

Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:

Подставляем туда известные переменные и получается, что длина окружности равна

Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною дм

Решение. Радиус окружности равен . Подставим туда наши переменные и получим (дм).

Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус , мы можем подставить наши данные и получить решение задачи.

Обучение на курсах по математике поможет закрепить полученные знания на практике.

Источник

Длина окружности круга через диаметр: онлайн-калькулятор

На нашем сайте собраны программы, которые помогают сделать расчеты по алгебре, геометрии. Сервис содержит расчеты по всем основным темам. Вы сможете найти длину окружности, периметры, объемы фигур, а также получить решение более сложных задач. Для этого достаточно только ввести данные. Сразу после этого будут доступны действия и ответ.

Использование автоматических подсчетов избавляет от промежуточных ошибок, неточностей при переводе из одних величин в другие. Чтобы получить точный ответ, воспользуйтесь нашим сервисом.

Нахождение длины окружности через диаметр. Онлайн-калькулятор

Программа позволяет рассчитать длину окружности по формуле:

Любой пользователь может производить расчеты на сайте без регистрации и платежей. Это создано для повышения уровня образования, возможности повысить успеваемость по математике, самостоятельно разобраться в непонятной теме.

Кто чаще всего пользуется нашим сервисом:

  • Школьники. Новую или непонятную тему можно быстро усвоить с помощью калькуляторов. Чертеж и последовательные действия помогут запомнить алгоритм подсчетов. Набор основных программ позволяет быстро переключаться между темами, готовиться к поступлению в ВУЗ.
  • Родители. Для помощи детям в освоении учебного материала и во время проверки домашнего задания уже не придется вникать в тему, искать нужную формулу. Достаточно ввести цифры и получить готовое решение.
  • Учителя. Планирование уроков теперь выполняется быстрее. При этом меньше времени понадобится, чтобы составить ученикам несколько вариантов задач и проверить автоматически.
  • Студенты. В процессе зачета или экзамена будет возможность мгновенно получить верное решение.

Источник

Длина окружности: онлайн-калькулятор

Вы будете перенаправлены на Автор24

  • Telegram
  • Whatsapp
  • Вконтакте
  • Одноклассники
  • Email

На этой странице вы узнаете, как посчитать длину окружности зная радиус или диаметр, а также сможете рассчитать длину круга с помощью онлайн-калькулятора.

Длина окружности рассчитывается через число Пи, удвоенное значение которого представляет собой длину окружности с радиусом, равным $1$.

Читайте также:  Тест по геометрии номер 3 трапеция

Для того чтобы рассчитать длину окружности через радиус, введите заданное значение радиуса в поле для ввода.

Расчёт длины окружности

Длина окружности $L$ определяется по формуле:

$L = 2 \cdot π \cdot R$, здесь

$R$ — радиус окружности;

$π$ — число Пи, его значение $≈3,1415$.

Задача

Чему равна длина окружности, радиус которой равен $50$ мм?

Решение:

Воспользуемся вышеприведённой формулой:

$L = 2 \cdot 3,14 \cdot 50 ≈ 314,16$ мм.

Данный ответ совпадает с решением онлайн-калькулятора, а значит, он найден верно.

Длину круга через диаметр можно посчитать с помощью следующего онлайн-калькулятора.

Длина окружности через диаметр

Через диаметр длину окружности рассчитывают по формуле:

$L = π \cdot d$, где

$d$ — диаметр окружности.

Рассмотрим также пример как найти окружность зная диаметр.

Задача

Чему равна длина окружности, диаметр которой равен $7$ см?

Решение:

$L = 3,14 \cdot 7 = 21,99$ см.

Проверим наш расчёт длины окружности по диаметру с помощью калькулятора онлайн. Результаты совпадают, а значит — ответ найден верно.

Если вы задаётесь обратным вопросом, например, как определить диаметр трубы по длине окружности, то для измерений длины окружности можно использовать нитку, которую нужно аккуратно проложить по окружности.

Затем получившийся отрезок нужно измерить с помощью линейки.

При необходимости более точных расчётов для измерения диаметра следует использовать штангенциркуль.

Нужны еще материалы по теме статьи?

Воспользуйся новым поиском!

Найди больше статей и в один клик создай свой список литературы по ГОСТу

Источник

Нахождение длины окружности: формула и задачи

В данной публикации мы рассмотрим, каким образом можно посчитать длину/периметр окружности (круга) и разберем примеры решения задач.

Формула вычисления длины/периметра

1. Через радиус

Периметр круга или длина окружности (C) равняется удвоенному произведению ее радиуса на число π :

C = 2 * π * r

Радиус (r) – это отрезок, который соединяет центр окружности и любую точку на ней.

2. Через диаметр

Периметр/длина окружности считается как произведение ее диаметра на число π :

C = π * d

Диаметр (d) равен двум радиусам (d=2r). Это отрезок, соединяющий две противоположные точки на окружности.

Примечание: в расчетах значение числа π округляется до 3,14.

Примеры задач

Задание 1
Найдите длину окружности, если ее радиус равен 12 см.

Решение:
Воспользуемся первой формулой, в которой участвует значение радиуса: C = 2 * 3,14 * 12 см = 75,36 см.

Задание 2
Найдите периметр круга, если ее диаметр составляет 15 см.

Решение:
Применим формулу, в которой используется диаметр: C = 3,14 * 15 см = 47,1 см.

Источник

Длина окружности

Окружностью называется ряд равноудалённых точек от одной точки, которая, в свою очередь, является центром этой окружности. Окружность имеет также свой радиус, равный расстоянию этих точек от центра.

Отношение длины, какой либо окружности к её диаметру, для всех окружностей одинаково. Это отношение есть число, являющееся математической константой, которое обозначается греческой буквой π.

Определение длины окружности

Формула расчёта длинны окружности

Произвести расчёт окружности можно по следующей формуле:

r – радиус окружности

D – диаметр окружности

Читайте также:  Биссектриса прямого угла прямоугольного треугольника делит медиану

L – длина окружности

Пример нахождения длинны окружности

Вычислить длину окружности, имеющей радиус 10 сантиметров.

Формула для вычисления дины окружности имеет вид:

где L – длина окружности, π – 3,14 , r – радиус окружности, D – диаметр окружности.

Таким образом, длина окружности, имеющей радиус 10 сантиметров равна:

L = 2 × 3,14 × 10 = 31,4 сантиметра

Окружность представляет собой геометрическую фигуру, являющуюся совокупностью всех точек на плоскости, удаленных от заданной точки, которая называется ее центром, на некоторое расстояние, не равное нулю и именуемое радиусом. Определять ее длину с различной степенью точности ученые умели уже в глубокой древности: историки науки считают, что первая формула для вычисления длины окружности была составлена примерно в 1900 году до нашей эры в древнем Вавилоне.

С такими геометрическими фигурами, как окружности, мы сталкиваемся ежедневно и повсеместно. Именно ее форму имеет внешняя поверхность колес, которыми оснащаются различные транспортные средства. Эта деталь, несмотря на свою внешнюю простоту и незатейливость, считаются одним из величайших изобретений человечества, причем интересно, что аборигены Австралии и американские индейцы вплоть до прихода европейцев совершенно не имели понятия о том, что это такое.

По всей вероятности, самые первые колеса представляли собой отрезки бревен, которые насаживались на ось. Постепенно конструкция колеса совершенствовалась, их конструкция становилась все более и более сложной, а для их изготовления требовалось использовать массу различных инструментов. Сначала появились колеса, состоящие из деревянного обода и спиц, а затем, для того, чтобы уменьшить износ их внешней поверхности, ее стали обивать металлическими полосами. Для того чтобы определить длины этих элементов, и требуется использовать формулу расчета длины окружности (хотя на практике, вероятнее всего, мастера это делали «на глаз» или просто опоясывая колесо полосой и отрезая требуемый ее участок).

Следует заметить, что колесо используется отнюдь не только в транспортных средствах. Например, его форму имеет гончарный круг, а также элементы шестеренок зубчатых передач, широко применяемых в технике. Издавна колеса использовались в конструкциях водяных мельниц (самые древние из известных ученым сооружений такого рода строились в Месопотамии), а также прялок, применявшихся для изготовления нитей из шерсти животных и растительных волокон.

Окружности нередко можно встретить и в строительстве. Их форму имеют достаточно широко распространенные круглые окна, очень характерные для романского архитектурного стиля. Изготовление этих конструкций – дело весьма непростое и требует высокого мастерства, а также наличия специального инструмента. Одной из разновидностей круглых окон являются иллюминаторы, устанавливаемые в морских и воздушных судах.

Таким образом, решать задачу определения длины окружности часто приходится инженерам-конструкторам, разрабатывающим различные машины, механизмы и агрегаты, а также архитекторам и проектировщикам. Поскольку число π, необходимое для этого, является бесконечным, то с абсолютной точностью определить этот параметр не представляется возможным, и поэтому при вычислениях учитывается та ее степень, которая в том или ином конкретном случае является необходимой и достаточной.

Источник

Поделиться с друзьями
Объясняем