Как создать равнобедренный треугольник

Содержание
  1. В каком порядке репетитор по математике рисует равнобедренный треугольник
  2. Как репетитор по математике рисует равнобедренный треугольник?
  3. Какие девиденты приносит это построение репетитору по математике?
  4. Презентация на тему : «Построение равнобедренного треугольника с помощью циркуля».
  5. Психолого-педагогические аспекты развития мотивации учебной деятельности на уроках по литературному чтению у младших школьников в рамках реализации ФГОС НОО
  6. Современные педтехнологии в деятельности учителя
  7. Диагностика и формирование пространственного представления у детей 5-9 лет
  8. «Творческая работа с детьми (3-10 лет) по теме Зимнее окно»
  9. Описание презентации по отдельным слайдам:
  10. Дистанционные курсы для педагогов
  11. Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
  12. Другие материалы
  13. Вам будут интересны эти курсы:
  14. Оставьте свой комментарий
  15. Автор материала
  16. Дистанционные курсы для педагогов
  17. Подарочные сертификаты
  18. Как построить равнобедренный треугольник

В каком порядке репетитор по математике рисует равнобедренный треугольник

Поговорим, казалось бы, о такой мелочи в системе преподавания геометрии 7 класса, как рисунок равнобедренного треугольника. Если Вы репетитор по математике – попросите Вашего ученика нарисовать такой треугольник. Как он это сделает? С вероятностью, равной 0,9 порядок проведения линий (сторон) на бумаге будет соответствовать последовательности расположения вершин треугольника в записи , то есть направлению стрелки, показанной на рисунке:

Именно так (то есть по кругу) сам репетитор по математике обозначает вершины и именно этот порядок запоминается. Понаблюдаем за учеником. Сначала, скорее всего, он нарисует репетитору математики левую боковую сторону, затем правую, а уже после этого соединит их нижние точки и нарисует основание. Все бы ничего, да вот проблема: трудно изображать боковые стороны равными (особенно если использовать непрозрачную линейку) и поэтому рисунок часто получается несимметричным. И вот ученик уже работает ластиком (в лучшем случае) и, как следствие, тратит на чертеж драгоценное время (пусть незначительное, но все-таки). Хороший репетитор по математике стремится использовать каждую свободную минуту своего занятия и поэтому всегда уделяет внимание оптимизации самостоятельной работы учащегося. Использование методики готовых чертежей не является панацеей, тем более в период, когда ребенок учится в 7 классе. В этом возрасте он приобретает чертежные навыки, и если репетитор по математике будет баловать его готовыми чертежами, то при классических формах подачи заданий, составляющих большую часть контрольных работ, ученик может растеряться.

Поэтому важно научить быстро и точно выполнять стандартные рисунки. Но как?
Есть одно простое правило. Оно не только ускорит построение равнобедренного треугольника, но и будет способствовать запоминанию его главных характеристик и свойств. Я предполагаю, что для этого имеется бумага в клеточку, линейка и карандаш.

Читайте также:  Натяжные потолки на прямоугольную комнату

Как репетитор по математике рисует равнобедренный треугольник?

Необходимо начать с основания медианы, биссектрисы и высоты. То есть отмечается узел любой клетки (основание медианы), от которого влево и вправо репетитор по математике откладывает равные отрезки – половинки будущего основания. Их концы соединяются. Далее от центрального узла карандаш преподавателя «поднимается» вверх на некоторое количество клеток (большее длины основания). В узле последней клетки ставится точка – вершина равнобедренного треугольника. Вершина треугольника готова. Таким образом, будет построен «каркас» фигуры, вершины которой можно даже в некоторых ситуациях (при рисунке-наброске) соединить и от руки.

Какие девиденты приносит это построение репетитору по математике?

Каждый раз, когда ученик отмечает вершины по данному плану, репетитор по математике напоминает ему о том, что вертикальный отрезок есть ни что иное, как медиана, биссектриса и высота треугольника. Многократные построения и напоминания репетитора пойдут только на пользу ученику, ибо заставят вспомнить важнейшее свойство равнобедренного треугольника. Ученик поймет и запомнит форму изучаемой фигуры, особенности и взаимосвязи ее элементов. Сильный семиклассник задумается (или догадается спросить у репетитора) о том, почему построенный таким образом треугольник обязательно окажется равнобедренным.

Часто в задачах по геометрии в 7 классе фигурирует произвольный треугольник. Я всегда советую своим ученикам строить его так, чтобы они значительно отличался по виду от равнобедренного. Почему? Если от центральной точки (от основания высоты), отложить влево и вправо разные отрезки даже с разницей в клетку, то, несмотря на несовпадение медианы с высотой, образованные ими треугольники окажутся чрезвычайно узкими и поэтому неудобными для любых демонстраций. Репетитор по математике просто не сможет в них ничего показать. Посмотрите, насколько близко оказываются друг от друга отрезки BH, BN и BM на рисунке, изображенном слева. И чем ближе изображение в виду равнобедренного треугольника, тем ближе они будут друг к другу. Об этом репетитор по математике предупреждает ученика уже в 7 классе. Дети легко принимают за истину то, что кажется верным по рисунку. Так высоту, приходящую в кажущуюся середину стороны школьники легко принимают за медиану. В будущем, когда подготовка к ЕГЭ по математике поставит перед репетитором задачу научить ребенка решать номера С4, навыки изображения треугольников общего вида будут весьма полезны. Рисуйте равнобедренный треугольник только тогда, когда он дан в условии. Если имеется треугольник общего вида — изобразите его удлиненным в одну из сторон относительно основания высоты.

Читайте также:  Как сшить тунику трапецию

Репетитор по математике, А.Н. Колпаков.

Источник

Презентация на тему : «Построение равнобедренного треугольника с помощью циркуля».

Курс повышения квалификации

Психолого-педагогические аспекты развития мотивации учебной деятельности на уроках по литературному чтению у младших школьников в рамках реализации ФГОС НОО

Курс повышения квалификации

Современные педтехнологии в деятельности учителя

  • Сейчас обучается 22 человека из 13 регионов

Курс повышения квалификации

Диагностика и формирование пространственного представления у детей 5-9 лет

«Творческая работа с детьми (3-10 лет) по теме Зимнее окно»

Описание презентации по отдельным слайдам:

Нарисуйте основание треугольника определенной длины.

Раствор циркуля установите равным длине нарисованного основания треугольника.

Поставьте иглу циркуля в начало основания треугольника и нарисуйте дугу над основанием.

Не меняя раствор циркуля, поставьте иглу циркуля в конец основания треугольника и нарисуйте дугу над основанием так, чтобы она пересеклась с первой дугой.

Соедините начало и конец основания треугольника с точкой пересечения двух дуг.

Вы построили равнобедренный треугольник.

Рабочие листы и материалы для учителей и воспитателей

Более 3 000 дидактических материалов для школьного и домашнего обучения

Акция до 31 августа

  • Опытные онлайн-репетиторы
  • Подготовка к ЕГЭ и ОГЭ
  • По всем школьным предметам 1-11 класс

«Начало учебного года современного учителя»

Свидетельство и скидка на обучение каждому участнику

Дистанционные курсы для педагогов

Видеолекции для
профессионалов

  • Свидетельства для портфолио
  • Вечный доступ за 120 рублей
  • 311 видеолекции для каждого

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 906 620 материалов в базе

Другие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 21.08.2016 1904
  • PPTX 633 кбайт
  • 21 скачивание
  • Оцените материал:

Настоящий материал опубликован пользователем Полицеймако Александра Александровна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 6 лет и 11 месяцев
  • Подписчики: 0
  • Всего просмотров: 4278
  • Всего материалов: 3

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 490 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Ваш ребёнок не любит читать?

Знаем, как пробудить интерес к книгам!

  • Опытные онлайн-репетиторы
  • Подготовка к ЕГЭ и ОГЭ
  • По всем школьным предметам 1-11 класс

Общее образование: в семье или в школе?

«Мнемоника: Структурирование информации. Создание интеллект-карт»

«Календарь счастливой жизни: инструменты и механизм работы для достижения своих целей»

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Как построить равнобедренный треугольник

Как построить равнобедренный треугольник? Это легко сделать с помощью линейки, карандаша и клеточек тетради.

Построение равнобедренного треугольника начинаем с основания. Чтобы рисунок получился ровным, количество клеточек в основании должно быть четным числом.

Делим отрезок — основание треугольника — пополам.

Вершину треугольника можно выбрать на любой высоте от основания, но обязательно ровно над срединой.

Как построить остроугольный равнобедренный треугольник?

Углы при основании равнобедренного треугольника могут быть только острыми. Чтобы равнобедренный треугольник получился остроугольным, угол при вершине тоже должен быть острым.

Для этого вершину треугольника выбираем повыше, подальше от основания.

Чем выше вершина, тем меньше угол при вершине. Углы при основании при этом, соответственно, увеличиваются.

Как построить тупоугольный равнобедренный треугольник?

С приближением вершины равнобедренного треугольника к основанию градусная мера угла при вершине увеличивается.

Значит, чтобы построить равнобедренный тупоугольный треугольник, вершину выбираем пониже.

Как построить равнобедренный прямоугольный треугольник?

Чтобы построить равнобедренный прямоугольный треугольник, надо вершину выбрать на расстоянии, равном половине основания (это обусловлено свойствами равнобедренного прямоугольного треугольника).

Например, если длина основания — 6 клеточек, то вершину треугольника располагаем на высоте 3 клеточек над серединой основания. Обратите внимание: при этом каждая клеточка у углов при основании делится по диагонали.

Построение равнобедренного прямоугольного треугольника можно начать с вершины.

Выбираем вершину, от нее под прямым углом откладываем равные отрезки вверх и вправо. Это — боковые стороны треугольника.

Соединим их и получим равнобедренный прямоугольный треугольник.

Построение равнобедренного треугольника с помощью циркуля и линейки без делений рассмотрим в другой теме.

Источник

Читайте также:  Прямоугольная параллельная изометрия это
Поделиться с друзьями
Объясняем