Как составить график уравнения окружности

Уравнение с двумя переменными и его график. Уравнение окружности

п.1. Понятие уравнения с двумя переменными

Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, \(\mathrm\) – гипербола.

Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.

Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
F(x; y) = \(\mathrm<\frac1x>\) – y = 0 – гипербола
F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).

п.2. Обобщенные правила преобразования графика уравнения

Пусть F(x; y) = 0 – исходный график некоторой функции

Симметричное отображение относительно оси OY

Симметричное отображение относительно оси OX

Центральная симметрия относительно начала координат

Параллельный перенос графика на a единиц вправо

Параллельный перенос графика на a единиц влево

Параллельный перенос графика на b единиц вниз

Параллельный перенос графика на b единиц вверх

Сжатие графика к оси OY в a раз

Сжатие графика к оси OX в b раз

F(x; by) = 0
0 Например:

Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ \mathrm <(x-2)^2+(y-1)^2=9>$$

п.4. Примеры

Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: \( \mathrm<7>=-\frac<2> + 2 > \) – это прямая

б) xy + 4 = 0
Выразим y из уравнения: \( \mathrm> \) – это гипербола

в) ( x+ 2) 2 + y 2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом \( \mathrm=2> \)

г) x 2 + 5y – 2 = 0
Выразим y из уравнения: \( \mathrm<5>> \) – это парабола

Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
\( \mathrm<5>=-\frac25|x|+2> \)
Строим график для \( \mathrm \), а затем отражаем его относительно оси OY в левую полуплоскость.

б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.

в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.

г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).

Читайте также:  Равнобедренный треугольник это как найти площадь

д) \(\mathrm<\frac<|x-1|><2>+2|y-2|=4>\)
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.

Пример 3. Постройте график уравнения:
а) x 2 + y 2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
(x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.

Источник

Как построить график окружности по уравнению

Центр окружности имеет координаты О (a; b), радиус равен R.

Пусть дано следующее уравнение окружности:

Шаг 1

Найдем координаты центра окружности.

Для этого приравняем каждое из слагаемых к нулю:

Следовательно, центр окружности будет находиться в точке О(3, -1).

Как построить окружность?

Окружностью называется фигура которая состоит из всех точек плоскости равноудаленных от данной точки. Эта точка называется центром окружности.

Радиусом называется любой отрезок соединяющей точку окружности с ее центром.

Чтобы построить окружность необходимо знать уравнение окружности:

(х – а) 2 + (у – b) 2 = R 2

Точка С(а;b) центр окружности, радиус R, х и у – координаты произвольной точки окружности.

И так, чтобы построить окружность необходимо знать цент окружности и радиус. Рассмотрим пример:

Пример №1:
(х – 1) 2 + (у – 2) 2 = 4 2

Найдем центр окружности:
х – 1=0
x=1

Центр окружности будет находится в точке (1;2)

Найдем радиус окружности:
R 2 =4
R 2 =2 2
R=2

Построим окружность. Отметим сначала центр окружности, а потом отложим с четырех сторон (вверх, вниз, влево и право) длину радиуса и отметим эту длину точками. Потом проведем окружность.

Пример №2:
х 2 + (у + 1) 2 =1

Можно представить уравнение окружности ввиде:
(х-0) 2 + (у + 1) 2 =1 2

Найдем центр окружности:
х=0

Центр окружности будет находится в точке (0;–1)

Найдем радиус окружности:
R 2 =1
R 2 =1 2
R=1

Построим окружность.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы подробно рассмотрим построение графиков уравнений. Вначале вспомним, что такое рациональное уравнение и множество его решений, образующее график уравнения. Подробно рассмотрим график линейного уравнения и свойства линейной функции, научимся читать графики. Далее рассмотрим график квадратного уравнения и свойства квадратичной функции. Рассмотрим гиперболическую функцию и ее график и график уравнения окружности. Далее перейдем к построению и изучению совокупности графиков.

Тема: Системы уравнений

Урок: Графики уравнений

1. Тема урока, введение

Мы рассматриваем рациональное уравнение вида

Мы говорили, что каждое уравнение в этой системе имеет свой график, если конечно имеются решения уравнений. Мы рассмотрели несколько графиков различных уравнений.

Читайте также:  Криволинейной трапецией называется плоская фигура ограниченная

Сейчас мы систематически рассмотрим каждое из известных нам уравнений, т.е. выполним обзор по графикам уравнений.

2. График линейного уравнения

1. Линейное уравнение с двумя переменными

x, y – в первой степени; a,b,c – конкретные числа.

Пример:

Графиком этого уравнения является прямая линия.

Мы действовали равносильными преобразованиями – y оставили на месте, всё остальное перенесли в другую сторону с противоположными знаками. Исходное и полученное уравнения равносильны, т.е. имеют одно и то же множество решений. График этого уравнения мы умеем строить, и методика его построения такова: находим точки пересечения с координатными осями и по ним строим прямую.

В данном случае

Зная график уравнения, мы можем многое сказать о решениях исходного уравнения, а именно: если

Эта функция возрастает, т.е. с увеличением x увеличивается y. Мы получили два частных решения, а как записать множество всех решений?

Если точка имеет абсциссу x, то ордината этой точки

Значит, решением исходного уравнения является множество пар чисел

У нас было уравнение, мы построили график, нашли решения. Множество всех пар – сколько их? Бесчисленное множество.

3. График рационального уравнения

2.

Это рациональное уравнение,

Найдем y, равносильными преобразованиями получаем

Положим и получаем квадратичную функцию, ее график нам известен.

Пример: Построить график рационального уравнения.

Графиком является парабола, ветви направлены вверх.

Найдем корни уравнения:

Схематически изобразим график (Рис. 2).

С помощью графика мы получаем всевозможные сведения и о функции, и о решениях рационального уравнения. Мы определили промежутки знакопостоянства, теперь найдем координаты вершины параболы.

У уравнения А каким может быть x? Любым!

Если мы зададим любое x, то получим точку

Решением исходного уравнения является множество пар

4. График уравнения – гипербола

3. Построить график уравнения

Необходимо выразить y. Рассмотрим два варианта.

Графиком функции является гипербола, функция не определена при

Функция убывающая.

Если

Если мы возьмем точку с абсциссой

Решением исходного уравнения является множество пар

Построенную гиперболу можно сдвигать относительно осей координат.

Например, график функции – тоже гипербола – будет сдвинут на единицу вверх по оси ординат.

5. График уравнения окружности

4. Уравнение окружности

Это рациональное уравнение с двумя переменными. Множеством решений являются точки окружности. Центр в точке радиус равен R (Рис. 4).

Рассмотрим конкретные примеры.

a.

Приведем уравнение к стандартному виду уравнения окружности, для этого выделим полный квадрат суммы:

Построим график уравнения (Рис. 5).

Читайте также:  Прямоугольный треугольник abc с прямым углом c проведена высота cd найдите величину угла

b. Построить график уравнения

Вспомним, что произведение равно нулю тогда и только тогда, когда один из сомножителей равен нулю, а второй существует.

График заданного уравнения состоит из совокупности графиков первого и второго уравнений, т.е. двух прямых.

Построим его (Рис. 6).

Построим график функции Прямая будет проходить через точку (0; -1). Но как она пройдет – будет возрастать или убывать? Определить это нам поможет угловой коэффициент, коэффициент при x, он отрицательный, значит функция убывает. Найдем точку пересечения с осью ox, это точка (-1; 0).

Аналогично строим график второго уравнения. Прямая проходит через точку (0; 1), но возрастает, т.к. угловой коэффициент положителен.

Координаты всех точек двух построенных прямых и являются решением уравнения.

6. Вывод

Итак, мы проанализировали графики важнейших рациональных уравнений, они будут использоваться и в графическом методе и в иллюстрации других методов решения систем уравнений.

Список рекомендованной литературы

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. – М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс : учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. — М., 2011. — 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

Рекомендованные ссылки на интернет-ресурсы

1. Раздел College.ru по математике (Источник).

2. Интернет-проект «Задачи» (Источник).

3. Образовательный портал «РЕШУ ЕГЭ» (Источник).

Рекомендованное домашнее задание

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 95-102.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Источник

Поделиться с друзьями
Строю.ру
Adblock
detector