- Как сложить два вектора по правилу параллелограмма
- Сложение и вычитание векторов
- Сумма векторов. Сложение векторов. Правило треугольника
- Разность векторов. Вычитание векторов
- Умножение вектора на число
- Векторы на ЕГЭ по математике. Действия над векторами
- Сложение векторов
- Вычитание векторов
- Умножение вектора на число
- Скалярное произведение векторов
- Онлайн-курс «Математика 10+11 100 баллов»
Как сложить два вектора по правилу параллелограмма
Письмо с инструкцией по восстановлению пароля
будет отправлено на вашу почту
- Главная
- 9-Класс
- Геометрия
- Видеоурок «Законы сложения векторов. Правило параллелограмма. Сумма нескольких векторов»
В алгебре часто при упрощении выражений и различных вычислениях используются переместительный и сочетательный законы.
Эти законы также справедливы для векторов.
Вспомним правило сложения векторов – правило треугольника.
Пусть нам даны два вектора а и b.
От произвольно выбранной точки А отложим вектор АВ, равный вектору а.
Затем от точки В отложим вектор ВС, равный вектору b.
Вектор АС называется суммой векторов а и b.
Воспользуемся этим правилом треугольника для доказательства следующей теоремы.
Для любых векторов а , b и с справедливы равенства:
сумма векторов а и b равна сумме векторов b и а (переместительный закон);
сумма векторов а плюс b и с равна сумме векторов а и b плюс с (сочетательный закон).
Для доказательства переместительного закона рассмотрим случай, когда векторы а и b не коллинеарны, т.е. ненулевые и не лежат на одной или параллельных прямых (случай коллинеарных векторов рассмотрите самостоятельно).
От произвольной точки А отложим вектор АВ, равный вектору а, и вектор АD, равный вектору b.
Основываясь на построенных векторах, достроим параллелограмм АВСD так, что вектор АВ равен вектору DС, а вектор АD равен вектору ВС.
По правилу треугольника сумма векторов АВ и ВС равна вектору АС, т.е. равна сумме векторов а и b.
С другой стороны, сумма векторов AD и DC также равна вектору АС, т.е. сумме векторов b и а.
Таким образом, сумма векторов а и b равна сумме векторов b и а.
Переместительный закон доказан.
Для доказательства сочетательного закона отложим от произвольной точки А вектор АВ, равный вектору а, от точки В вектор ВС, равный вектору b, и от точки С вектор CD, равный вектору с.
Рассмотрим сумму векторов а плюс b и вектора с с точки зрения правила треугольника: сумма векторов а и b равна вектору АС, в свою очередь, сумма вектора АС и вектора с равна вектору АD.
Теперь рассмотрим сумму векторов а и b плюс с: сумма векторов b и с, согласно рисунку, равна вектору ВD, в свою очередь, сумма векторов а и ВD равна вектору АD.
Исходя из этого, сумма векторов а плюс b и с равна сумме векторов а и b плюс с.
Что доказывает сочетательный закон.
Важно отметить, что при доказательстве переместительного закона было обосновано правило параллелограмма сложения неколлинеарных векторов: чтобы сложить неколлинеарные векторы а и b, необходимо от произвольной точки А отложить вектор АВ, равный вектору а, и вектор AD, равный вектору b, затем достроить параллелограмм АВСD, тогда вектор АС равен сумме векторов а и b.
Правило треугольника и правило параллелограмма находят сумму двух векторов, но как сложить несколько векторов?
Чтобы сложить несколько векторов, необходимо сложить первый вектор со вторым, затем сложить их сумму с третьим вектором и так далее.
Из законов сложения векторов следует, что сумма нескольких векторов не зависит от того, в каком порядке происходит сложение.
Рассмотрим рисунок, отражающий сумму векторов а, b и с:
от произвольной точки А отложен вектор АВ, равный вектору а, затем от точки В отложен вектор ВС, равный вектору b, и, наконец, от точки С отложен вектор CD, равный вектору с.
В результате получается вектор АD, равный сумме векторов а, b и с.
Если продолжить процесс откладывания векторов, можно построить сумму четырех, пяти, любого количества векторов.
Правило построения суммы нескольких векторов называется правилом многоугольника: если А1, А2, …,Аn – произвольные точки плоскости, то сумма векторов А1А2, А2А3, …, Аn –1An равна вектору А1Аn.
Это равенство справедливо для всех точек А1, А2, …, Аn, в частности, когда некоторые из них совпадают.
Важно заметить, что если начало первого вектора совпадает с концом последнего вектора, то сумма данных векторов равна нулевому вектору.
Итак, подведем итоги:
– Для любых векторов а, b и с справедливы равенства:
сумма векторов а и b равна сумме векторов b и а;
сумма векторов а плюс b и с равна сумме векторов а и b плюс с.
– Чтобы сложить неколлинеарные векторы а и b, необходимо от точки А отложить вектор АВ, равный вектору а, и вектор AD, равный вектору b, затем достроить параллелограмм АВСD, тогда вектор АС равен сумме векторов а и b (правило параллелограмма).
– Если А1, А2 … An – произвольные точки плоскости, то сумма векторов
А1А2, А2А3. Аn–1An равна вектору А1Аn (правило многоугольника).
Источник
Сложение и вычитание векторов
Векторы: , , , ,
Нулевой вектор:
Координаты векторов: , , , , ,
Определение 1 Если точка начала какого-либо вектора , то говорят, что вектор отложен от точки (рис. 1).
Теорема 1 От любой точки можно отложить вектор единственный .
Существование: Имеем два следующих случая:
Здесь получаем, что искомый нами вектор совпадает с вектором .
Вектор не является нулевым.
Пусть точка является началом вектора , а точкой — конец вектора . Проведем через точку прямую параллельную вектору . Будем откладывать на прямой отрезки и . Рассмотрим векторы и . Из этих двух векторов нужный нам вектор — вектор, сонаправленный с вектором (рис.2)
Из данного выше построения сразу же будет следовать единственность данного вектора.
Сумма векторов. Сложение векторов. Правило треугольника
Суммой двух векторов и называется третий вектор , проведенный из начала к концу , если начало вектора совпадает с концом вектора .
Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.
Суммой нескольких векторов , , называется вектор , получающийся в результате последовательного сложения данных векторов.
Такая операция выполняется по правилу многоугольника.
Коммутативный закон сложения
Ассоциативный закон сложения
Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.
Отметим несколько свойств сложения двух векторов:
Для произвольного вектора выполняется равенство
Для произвольных точек справедливо следующее равенство
Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.
Разность векторов. Вычитание векторов
Разностью двух векторов и называется вектор при условии:
, если
Разность векторов и равна сумме вектора и противоположного вектора :
Разность двух одинаковых векторов равна нулевому вектору :
Длина нулевого вектора равна нулю:
Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.
Умножение вектора на число
Пусть нам дан вектор и действительное число .
Определение Произведением вектора на действительное число называется вектор удовлетворяющий следующим условиям:
Длина вектора равна ;
Векторы и сонаправлены, при и противоположно направлены, если
Источник
Векторы на ЕГЭ по математике. Действия над векторами
Стандартное определение: «Вектор — это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?
А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.
Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением — «сколько килограмм» или «сколько джоулей».
Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.
Скорость, сила, ускорение — векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения направлено к поверхности Земли, а величина его равна 9,8 м/с 2 . Импульс, напряженность электрического поля, индукция магнитного поля — тоже векторные величины.
Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:
Вот другой пример.
Автомобиль движется из A в B . Конечный результат — его перемещение из точки A в точку B , то есть перемещение на вектор .
Теперь понятно, почему вектор — это направленный отрезок. Обратите внимание, конец вектора — там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или
До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы — новое понятие. Это другой класс математических объектов. Для них свои правила.
Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.
Понятия «больше» и «меньше» для векторов не существует — ведь направления их могут быть разными. Сравнивать можно только длины векторов.
А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1 . Нулевым — вектор, длина которого равна нулю, то есть его начало совпадает с концом.
Удобнее всего работать с векторами в прямоугольной системе координат — той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа — ее координаты по x и y , абсцисса и ордината.
Вектор также задается двумя координатами:
Здесь в скобках записаны координаты вектора — по x и по y .
Находятся они просто: координата конца вектора минус координата его начала.
Если координаты вектора заданы, его длина находится по формуле
Сложение векторов
Для сложения векторов есть два способа.
1 . Правило параллелограмма. Чтобы сложить векторы и
, помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов
и
.
Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.
2 . Второй способ сложения векторов — правило треугольника. Возьмем те же векторы и
. К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов
и
.
По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.
Представьте, что вы идете из пункта А в пункт В , из В в С , из С в D , затем в Е и в F . Конечный результат этих действий — перемещение из А в F .
При сложении векторов и
получаем:
Вычитание векторов
Вектор направлен противоположно вектору
. Длины векторов
и
равны.
Теперь понятно, что такое вычитание векторов. Разность векторов и
— это сумма вектора
и вектора
.
Умножение вектора на число
При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины
. Он сонаправлен с вектором
, если k больше нуля, и направлен противоположно
, если k меньше нуля.
Скалярное произведение векторов
Векторы можно умножать не только на числа, но и друг на друга.
Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.
Обратите внимание — перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов — силы и перемещения:
Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов и
:
Из формулы для скалярного произведения можно найти угол между векторами:
Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто векторным методом задача 14 решается в несколько раз быстрее, чем классическим.
В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике, знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.
Векторы — полезнейший математический инструмент. В этом вы убедитесь на первом курсе.
Онлайн-курс «Математика 10+11 100 баллов»
— Теория: учебник Анны Малковой + 70 ч. видеоразборов.
— 144 ч. мастер-классов: 8 онлайн мастер-классов с Анной Малковой в месяц.
— Тренажер для отработки задач ЕГЭ (800+ задач): автоматическая + ручная проверки.
— Связь с Анной Малковой (чаты и почта).
— 9 репетиционных ЕГЭ: ежемесячно.
— Контроль: страница личных достижений учащегося, отчеты родителям.
— Личный кабинет.
Источник