Как считается площадь параллелограмма

Содержание
  1. Площадь параллелограмма
  2. Площадь параллелограмма по основанию и высоте параллелограмма
  3. Площадь параллелограмма по стороне и высоте, опущенной на эту сторону
  4. Площадь параллелограмма по двум сторонам и углу между ними
  5. Площадь параллелограмма по двум диагоналям и углу между этими диагоналями
  6. Площадь параллелограмма по вписанной окружности и стороне
  7. Площадь параллелограмма по вписанной окружности и углу между сторонами
  8. Таблица с формулами площади параллелограмма
  9. Определения
  10. Как найти площадь параллелограмма
  11. Онлайн калькулятор
  12. Зная длину стороны a и длину высоты h
  13. Формула
  14. Пример
  15. Зная длины сторон a и b, и угол α
  16. Формула
  17. Пример
  18. Зная длины сторон a и b, и угол β
  19. Формула
  20. Пример
  21. Зная длины сторон a и b, и длину диагонали (d1 или d2)
  22. Формула
  23. Пример
  24. Зная длины диагоналей d1 и d2, и угол между ними γ
  25. Формула
  26. Пример
  27. Все формулы площади параллелограмма
  28. Площадь параллелограмма
  29. Площадь параллелограмма — определение и вычисление с примерами решения
  30. Площадь параллелограмма

Площадь параллелограмма

Площадь параллелограмма, формулы и калькулятор для вычисления площади в режиме онлайн.

Для вычисления площади параллелограмма применяются различные формулы, в зависимости от известных исходных данных. Ниже приведены формулы и калькулятор для вычисления площади в режиме онлайн.

Площадь параллелограмма – это численная характеристика, характеризующая размер плоскости, ограниченной геометрической фигурой, образованной четырьмя последовательно соединенными отрезками (сторонами), у которой противоположные стороны попарно параллельны и равны между собой.

Площадь параллелограмма по основанию и высоте параллелограмма

Площадь параллелограмма по стороне и высоте, опущенной на эту сторону

Площадь параллелограмма по двум сторонам и углу между ними

Площадь параллелограмма по двум диагоналям и углу между этими диагоналями

Площадь параллелограмма по вписанной окружности и стороне

Данная формула применима только для параллелограммов, в которые можно вписать окружность. Таким параллелограммом может являться только ромб.

Площадь параллелограмма по вписанной окружности и углу между сторонами

Данная формула применима только для параллелограммов, в которые можно вписать окружность. Таким параллелограммом может являться только ромб.

Если в исходных данных угол задан в радианах, то для перевода в градусы вы можете воспользоваться «Конвертером величин». Или вычислить самостоятельно по формуле: 1 рад × (180/π) ° = 57,296°

Таблица с формулами площади параллелограмма

исходные данные
(активная ссылка для перехода к калькулятору)
эскиз формула
1 основание и высота
2 сторона и высота,
опущенная на эту сторону
3 две стороны и угол между ними
4 диагонали и угол между ними
5 вписанная окружность и сторона
6 вписанная окружность и угол между сторонами

Определения

Параллелограмм — это геометрическая фигура, образованная четырьмя последовательно соединенными отрезками (сторонами), у которой противоположные стороны попарно параллельны и равны между собой.

Читайте также:  Трапеция дворников акцент стартвольт

Высота параллелограмма – это отрезок проведенный из вершины параллелограмма к противоположной стороне под углом в 90 градусов.

Некоторые свойства параллелограмма:

  • Сумма углов параллелограмма равна 360 градусов
  • Сумма углов, прилегающих к любой из сторон равна 180 градусов
  • Противоположные стороны параллельны и имеют одинаковую длину
  • Противолежащие углы равны

Площадь измеряется в единицах измерения в квадрате: км 2 , м 2 , см 2 , мм 2 и т.д.

Источник

Как найти площадь параллелограмма

Онлайн калькулятор

Параллелограмм – это четырёхугольник, у которого противоположные стороны параллельны друг другу.

Узнать чему равна площадь параллелограмма (S) можно зная (либо-либо):

  • длину стороны a и длину высоты h
  • длины сторон a и b, и угол α
  • длины сторон a и b, и угол β
  • длины сторон a и b, и длину любой из диагоналей (d1 или d2)
  • длины диагоналей d1 и d2, и угол между ними γ

Подставьте значения в соответствующие поля и получите результат.

Зная длину стороны a и длину высоты h

Чему равна площадь параллелограмма S если известны длина стороны a и длина высоты h, проведенной к этой стороне?

Формула

Пример

Если сторона параллелограмма a = 8 см, а высота h = 4 см, то:

S = 8 ⋅ 4 = 32 см 2

Зная длины сторон a и b, и угол α

Чему равна площадь параллелограмма S если известны длины сторон a и b, и угол между ними α?

Формула

Пример

Если сторона параллелограмма a = 8 см, сторона b = 5 см, а ∠α = 50° то:

S = 8 ⋅ 5 ⋅ sin 50 = 40 ⋅ 0.766 ≈ 30.64 см 2

Зная длины сторон a и b, и угол β

Чему равна площадь параллелограмма S если известны длины сторон a и b, и угол между ними β?

Формула

Пример

Если сторона параллелограмма a = 8 см, сторона b = 5 см, а ∠β = 130° то:

S = 8 ⋅ 5 ⋅ sin(180-130) = 40 ⋅ 0.766 ≈ 30.64 см 2

Зная длины сторон a и b, и длину диагонали (d1 или d2)

Чему равна площадь параллелограмма S если известны длины сторон a и b, и длина любой из диагоналей d?

Формула

S = 2 √ p⋅(p-a)⋅(p-b)⋅(p-d) , где p=(a+b+d)/2

Пример

Если сторона параллелограмма a = 8 см, сторона b = 5 см, а диагональ d = 11 см то:

p = (8 + 5 +11)/2 = 12

S = 2 √ 12⋅(12-8)⋅(12-5)⋅(12-11) = 2⋅ √ 12⋅4⋅7⋅1 = 2⋅ √ 336 = 36.66 см 2

Зная длины диагоналей d1 и d2, и угол между ними γ

Чему равна площадь параллелограмма S если известны длины диагоналей d1 и d2, и угол между ними γ?

Формула

Пример

Если диагональ параллелограмма d1 = 11 см, диагональ d2 = 7 см, а ∠γ = 45° то:

S = ½ ⋅ 11 ⋅ 7 ⋅ sin 45 = 38.5 ⋅ 0.7071 ≈ 27.22 см 2

Источник

Все формулы площади параллелограмма

1. Формула площади параллелограмма через стороны и углы

a, b — стороны параллелограмма

α , β — углы параллелограмма

Формула площади через стороны и углы параллелограмма, ( S ):

Калькулятор — вычислить, найти площадь параллелограмма:

Читайте также:  Образец прямоугольной печати больницы

2. Формула площади параллелограмма через сторону и высоту

a, b — стороны параллелограмма

H b высота на сторону b

H a высота на сторону a

Формула площади через стороны и высоты параллелограмма, ( S ):

3. Формула площади параллелограмма через диагонали и угол между ними

D — большая диагональ

d —меньшая диагональ

α , β — углы между диагоналями

Формула площади через диагонали параллелограмма и угол между ними , ( S ):

Калькулятор — вычислить, найти площадь параллелограмма:

Формулы для параллелограмма:

Источник

Площадь параллелограмма

Площадь параллелограмма можно найти по стороне и проведённой к этой стороне высоте, по двум сторонам и углу, по диагоналям и углу между ними.

I. Площадь параллелограмма по стороне и высоте

Площадь параллелограмма равна произведению стороны параллелограмма на высоту, проведённую к этой стороне.

Формула для нахождения площади параллелограмма через сторону и высоту:

Например,площадь параллелограмма ABCD через высоту можно найти по одной из формул:

II. Площадь параллелограмма по сторонам и углу

Площадь параллелограмма равна произведению его сторон на синус угла между ними.

Формула для нахождения площади параллелограмма через стороны и угол:

Например, площадь параллелограмма ABCD

По свойствам параллелограмма, противоположные углы параллелограмма равны:

Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, то есть,

А так как синус тупого угла равен синусу смежного ему угла, то

Таким образом, площадь параллелограмма можно найти как произведение его двух любых не смежных сторон на синус любого угла.

III. Площадь параллелограмма по диагоналям

Площадь параллелограмма равна половине произведения его диагоналей на синус угла между ними.

Формула площади параллелограмма через диагонали:

Например, площадь параллелограмма ABCD

то в качестве угла между диагоналями можно брать любой угол — как острый, так и тупой (прямой — в ромбе и квадрате).

Источник

Площадь параллелограмма — определение и вычисление с примерами решения

Теорема (о площади параллелограмма). Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.

Доказательство:

Пусть

1) Проведем высоту к прямой, содержащей сторону параллелограмма.

2) (как соответственные углы при параллельных прямых и и секущей Поэтому (по гипотенузе и острому углу).

3) Параллелограмм состоит из трапеции и треугольника а прямоугольник — из трапеции и треугольника Так как треугольники и равны, то равны и их площади, а потому равными будут площади параллелограмма и прямоугольника

4) Но и поэтому Следовательно,

Заметим, что если основание высоты — точка -совпадает с точкой или лежит на продолжении стороны то доказательство теоремы будет аналогичным.

В общем виде формулу площади параллелограмма можно записать так:

где — сторона параллелограмма, — высота, к ней проведенная.

Читайте также:  Окружность головы ребенка центильная таблица

Пример:

Докажите, что высоты ромба, проведенные из одной вершины, равны.

Доказательство:

Пусть — данный ромб, и — его высоты (рис. 232).

Ромб является параллелограммом, поэтому Но а значит

Пример:

Периметр параллелограмма равен 36 см, а его высоты — 4 см и 5 см. Найдите площадь параллелограмма.

Решение:

1) Пусть — данный параллелограмм, и — его высоты (рис. 232),

2) По условию поэтому

3) Пусть см, тогда см.

4) Так как по формуле площади параллелограмма или имеем уравнение: То есть откуда (см).

5) Тогда

Ответ. 40

Площадь параллелограмма

С помощью формулы площади прямоугольника можно доказать формулу площади произвольного параллелограмма.

Теорема (формула площади параллелограмма)

Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне:

где — сторона параллелограмма, — проведенная к ней высота.

Пусть — данный параллелограмм, не являющийся прямоугольником (рис. 145, а). Проведем его высоты и докажем, что Четырехугольник является прямоугольной трапецией, площадь которой можно вычислить двумя способами — как сумму площадей параллелограмма и треугольника или как сумму площадей прямоугольника и треугольника Треугольники равны по гипотенузе и катету как противолежащие стороны параллелограмма, как расстояния между параллельными прямыми). Следовательно, эти треугольники имеют равные площади. Тогда площади параллелограмма и прямоугольника также равны, т.е. Случаи, когда точка не является внутренней точкой отрезка (рис. 145, б, в), рассмотрите самостоятельно.

Пример:

Площадь параллелограмма равна а длины его высот — 3 см и 4 см. Найдите периметр параллелограмма.

Решение:

Пусть дан параллелограмм с площадью и высотами (рис. 146).

Поскольку

Следовательно, периметр параллелограмма равен

Ответ: 42 см.

Решая приведенную задачу, можно заметить интересную закономерность: чем больше сторона параллелограмма, тем меньше проведенная к ней высота.

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Прямоугольник и его свойства
  • Ромб и его свойства, определение и примеры
  • Квадрат и его свойства
  • Трапеция и ее свойства
  • Свойство катета прямоугольного треугольника, лежащего против угла в 30°
  • Четырехугольник и его элементы
  • Четырехугольники и окружность
  • Параллелограмм, его свойства и признаки

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Поделиться с друзьями
Объясняем