Как решить задачу боковая сторона равнобедренного треугольника

Равнобедренный треугольник: свойства, признаки и формулы

О чем эта статья:

Определение равнобедренного треугольника

Какой треугольник называется равнобедренным?

Равнобедренным называется треугольник, у которого две стороны равны.

Давайте посмотрим на такой треугольник:

На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.

А вот как называются стороны равнобедренного треугольника:

AB и BC — боковые стороны,

AC — основание треугольника.

Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.

Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.

Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.

Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.

Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».

В данном треугольнике медианой является отрезок BH.

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.

Высотой в представленном равнобедренном треугольнике является отрезок BH.

Признаки равнобедренного треугольника

Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.

  1. Если у треугольника два угла равны, то этот треугольник — равнобедренный.
  2. Если высота треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник — равнобедренный.
  3. Если высота треугольника совпадает с его биссектрисой, проведенной из того же угла, то такой треугольник — равнобедренный.
  4. Если биссектриса треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник снова равнобедренный!
Читайте также:  Нахождение сторон равнобедренного треугольника по высоте

Свойства равнобедренного треугольника

Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!

Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, AH = HC и BH — медиана.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.

Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.

Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Читайте также:  Окружность головы ребенка центильная таблица

Во-вторых, AH = HC и BH — медиана.

Примеры решения задач

Нет ничего приятнее, чем поупражняться и поискать углы и стороны в равнобедренном треугольнике. Ну… почти ничего.

Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.

Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.

Значит, ∠A = ∠C = 80°.

Не должно вас удивить и то, что сумма углов треугольника равна 180°.

∠B = 180° − 80° − 80° = 20°.

Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.

Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.

А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.

Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.

Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.

Источник

Боковая сторона равнобедренного треугольника

Средняя оценка: 4.6

Всего получено оценок: 286.

Средняя оценка: 4.6

Всего получено оценок: 286.

Боковая сторона равнобедренного треугольника достаточно интересное явление, поскольку ее часто просят найти в простых геометрических задач. Главное в нахождении боковой стороны знать основной метод решения, а сам процесс трудности не представляет.

Равнобедренный треугольник

Равнобедренный треугольник – это треугольник, две стороны которого равны, а третья является основанием.

Рис. 1. Равнобедренный треугольник

Только в равнобедренном треугольнике основание имеет реальное практическое применение. Для лучшего визуального восприятия фигуры стоит располагать чертеж так, чтобы основание располагалось снизу. При этом равносторонний треугольник считается частным случаем равнобедренного. В равностороннем треугольнике любая сторона может считаться как основанием, так и боковой. При этом равносторонний треугольник можно построить, зная только одну сторону. Построение равнобедренного треугольника по боковой стороне невозможно, нужно знать значение основания или угол между сторонами.

Читайте также:  Как узнать диаметр трубы если известна длина окружности

Свойства равнобедренного треугольника

Свойств равнобедренного треугольника не так много. В решениях школьных задач даже старших классов используется всего 3 свойства:

  • Боковые стороны треугольника равны.
  • Биссектриса треугольника совпадает с медианой и высотой.
  • Углы при основании равнобедренного треугольника равны.

Этих свойств вполне достаточно, чтобы использовать стиль решения неприменимый для любого другого треугольника.

Боковая сторона треугольника

Равнобедренный отличается от остальных фигур тем, что достаточно двух показателей, из которых хотя бы один должен быть стороной, чтобы решить весь треугольник.

Если известно основание и любой из углов, то найти боковую сторону совсем не сложно. Если опустить на основание высоту, которая совпадет с медианой и биссектрисой, то получится два малых равных между собой прямоугольных треугольника, в которых боковая сторона будет являться гипотенузой.

Рис. 3. Высота равнобедренного треугольника

Сторону можно найти из тригонометрической функции синуса или косинуса. Выбор функции зависит от того, какой угол известен. Для этого понадобится один из катетов. Один из катетов является высотой и его найти не всегда возможно. Чаще всего используют катет, равный половине основания. А почему он равен половине основания?

Тригонометрическую функцию известного угла можно определить по таблицам Брадиса. В этих таблицах рассчитаны значения для всех существующих целых и промежуточных углов.

Равнобедренный треугольник нельзя решить, если:

  • известны только 2 боковые стороны;
  • известны только углы;
  • известно только основание;
  • известна только величина любого из характеризующих отрезков: высоты, медианы, биссектрисы и т.д.

Во всех остальных случаях треугольник можно решить, даже если известна только площадь и один из углов. Зачем знать варианты, когда решение точно невозможно? Чтобы не попасть в ловушку не решаемых задач. Такие редко, но встречаются. Предоставляя их к решению, составители проверяют уровень знаний учеников о фигуре.

Что мы узнали?

Мы поговорили о том, что такое равнобедренный треугольник, выделили основные его свойства и поговорили о методах нахождения сторон равнобедренного треугольника. Также мы выделили в отдельности боковую сторону и рассказали, как просто и быстро определить значение боковой стороны равнобедренного треугольника.

Источник

Поделиться с друзьями
Объясняем