Как решать примеры с трапеции

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия –

Отношение площадей этих треугольников есть .

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то

Читайте также:  Прямоугольного сечения для кранов с мостовыми кранами

Площадь

или где – средняя линия

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Источник

Узнать ещё

Знание — сила. Познавательная информация

Как решать задачи с трапецией

Чтобы понять, как решать задачи с трапецией, полезно запомнить три основных пути решения.

I. Провести две высоты.

Ia. Четырехугольник BCKF — прямоугольник (так как у него все углы прямые). Следовательно, FK=BC.

AD=AF+FK+KD, отсюда AD=AF+BC+KD.

Треугольники ABF и DCK — прямоугольные.

(Следует учесть и другой вариант:

Ib.

В этом случае AD=AF+FD=AF+FK-DK=AF+BC-DK.)

Ic. Если трапеция равнобедренная, решение задачи упрощается:

В этом случае прямоугольные треугольники ABF и DCK равны, например, по катету и гипотенузе (AB=CD по условию, BF=CK как высоты трапеции). Из равенства треугольников следует равенство соответствующих сторон:

II. Провести прямую, параллельную боковой стороне.

IIa. BM ∥ CD. Так как BC ∥ AD (как основания трапеции), то BCDM — параллелограмм. Следовательно, MD=BC, BM=CD, AM=AD-BC.

IIb. В частности, для равнобедренной трапеции

BM ∥ CD. Так как CD=AB, то и BM=AB. То есть получаем равнобедренный треугольник ABM и параллелограмм BCDM.

III. Продолжить боковые стороны и получить треугольник.

Прямые AB и CD пересекаются в точке P.

Треугольники APD и BPC подобны по двум углам (угол P — общий, ∠ PAD= ∠ PBC как соответственные при BC ∥ AD и секущей AP).

Следовательно, их стороны пропорциональны:

Эти три подхода к решению задач на трапецию — основные. Помимо них, существует много других способов. Некоторые рассмотрены на этом сайте. Например, здесь — как решать задачи с трапецией, у которой диагонали перпендикулярны.

Читайте также:  360 градусов для окружности

Источник

Трапеция — определение, формулы и свойства

Перед тобой лучший гид по трапеции! Только то, что нужно. Без воды.

Основные определения, формулы и свойства.

Помни о своей цели!

Тебе нужно подготовиться к ЕГЭ по математике так, чтобы поступить в ВУЗ мечты!

Трапеция — коротко о главном

Что такое трапеция:

Трапеция – четырёхугольник, у которого две стороны параллельны (они называются основания), а две другие – нет (это боковые стороны).

Сумма углов при каждой боковой стороне трапеции равна 180°

\( \displaystyle \angle 1+\angle 2=180<>^\circ \) и \( \displaystyle \angle 3+\angle 4=180<>^\circ \)

Средняя линия трапеции:

Средняя линия трапеции (\( \displaystyle MN\)) – отрезок, соединяющий середины боковых сторон: \( \displaystyle AM=MB,\ \ CN=ND\).

Средняя линия параллельна основаниям: \( \displaystyle MN\parallel BC\parallel AD\).

Длина средней линии трапеции равна полусумме длин оснований: \( \displaystyle MN=\frac<2>\).

Диагонали трапеции:

Диагонали любой трапеции пересекаются в точке О.

Треугольники, образованные основаниями трапеции и отрезками диагоналей
(\( \displaystyle BOC\) и \( \displaystyle AOD\)) подобны по двум углам с коэффициентом подобия равным отношению оснований: \( \displaystyle k=\frac\).

Площади треугольников, образованных боковыми сторонами и отрезками диагоналей трапеции, равны: \( \displaystyle <_<\Delta AOB>>=<_<\Delta COD>>\).

Равнобедренная (равнобокая трапеция)

Равнобедренная (равнобокая) трапеция – это трапеция, у которой боковые стороны равны: \( \displaystyle AB=CD\).

Свойства равнобедренной трапеции:

Углы при основании равны: \( \displaystyle \angle A=\angle D,\text< >\angle B=\angle C\);

Сумма противолежащих углов равна \( \displaystyle 180<>^\circ \): \( \displaystyle \angle A+\angle C=\angle B+\angle D=180<>^\circ \).

Стороны и диагональ равнобокой трапеции связаны соотношением: \( \displaystyle A<^<2>>=B<^<2>>=AD\cdot BC+A<^<2>>\).

Если трапецию можно вписать в окружность…

Если трапецию можно вписать в окружность, то она – равнобокая.

Площадь трапеции

Площадь трапеции равна полусумме оснований, умноженной на высоту: \( \displaystyle <_>=\frac<2>\cdot h\).

Для справки: В нашем учебнике для подготовки к ЕГЭ по математике есть все темы планиметрии и стереометрии (да и алгебры тоже есть).

Что такое трапеция?

Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.

Параллельные стороны называются – основания, а непараллельные стороны называются боковые стороны.

Оказывается, трапеция (как и треугольник) бывает равнобедренная.

Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).

И тут возникает вопрос: а могут ли у трапеции быть равными ОСНОВАНИЯ?

А вот и нет. Тогда это получится не трапеция, а параллелограмм, потому что две стороны окажутся параллельны и равны (вспоминаем признаки параллелограмма)

Свойства трапеции

Итак, что ты должен знать о свойствах трапеции…

Сумма углов при каждой боковой стороне трапеции равна 180°. (у нас на рисунке \( \displaystyle \angle 1+\angle 2=180<>^\circ \) и \( \displaystyle \angle 3+\angle 4=180<>^\circ \))

Ну, конечно, просто потому, что основания – параллельны, а боковая сторона – секущая.

Вот и получается, что \( \displaystyle \angle 1\) и \( \displaystyle \angle 2\) – внутренние односторонние углы при параллельных \( \displaystyle AD\) и \( \displaystyle BC\) и секущей \( \displaystyle AB\).

Поэтому \( \displaystyle \angle 1+\angle 2=180<>^\circ \).

И точно так же \( \displaystyle \angle 3\) и \( \displaystyle \angle 4\) – внутренние односторонние углы при тех же параллельных \( \displaystyle AD\) и \( \displaystyle BC\), но секущая теперь – \( \displaystyle CD\).

Видишь: главное, что играет роль – это параллельность оснований. Давай разберем еще некоторые свойства трапеции.

Как у всякого четырехугольника, у трапеции есть диагонали. Их две – посмотри на рисунки:

Источник

Поделиться с друзьями
Объясняем