Как разделить окружность пополам не имея центра

Деление круга на равные части

Статья содержит два калькулятора, рассчитывающие параметры деления круга на равные по площади части радиусами и параллельными хордами

Ниже представлены два калькулятора, рассчитывающие параметры разделения круга на равные части. Сначала — традиционный калькулятор, который делит круг на равные части радиусами (примерно так, как режут пиццу или торт), под ним — нетрадиционный калькулятор, который делит круг на равные по площади части параллельными хордами. Оба калькулятора визуализируют результат рисунком. Методы расчета с формулами для обоих калькуляторов приведены ниже, под калькуляторами.

Деление круга на равные по площади части радиусами

Деление круга на равные по площади части параллельными хордами

Деление круга на равные части радиусами

Традиционный и очень простой метод деления круга — по факту, нарезка равных секторов. Метод и формулы очень просты:

  1. Определяем угловой размер каждого сектора в радианах, путем деления 360 градусов на нужное число секторов.
  1. Определяем размер дуги сектора, перемножая радиус на угол в радианах
  1. Определяем размер хорды по теореме косинусов (хорда является основанием равнобедренного треугольника с боковыми сторонами R и противолежащим углом альфа.

Собственно и всё — мы получили все характеристики для N равных секторов

Деление круга на равные части параллельными хордами

Этот способ более любопытен, чем предыдущий. Для простоты будем рассматривать верхнюю половину круга, так как с нижней все будет симметрично.

Задача состоит в определении x-вой координаты точек, через которые нужно проводить хорды (на рисунке это точки x1 и x2). Выведем для начала формулу площади куска, отсекаемого хордой слева.

Верхнюю полуокружность можно представить графиком функции y=f(x), где x — это координата вдоль оси абсцисс, а y — это функция, численно равная y координате соответствующей точки верхней полуокружности.

По теореме Пифагора получаем следующую функцию

Чтобы получить площадь фигуры, отсекаемой хордой слева, надо проинтегрировать эту функцию от -R до x. Первообразная функции равна:

Осталось определиться с константой. Нам надо, чтобы в точке с координатами -R площадь была равна нулю. Подставив -R вместо x в формулу выше, получаем

Итак, полное выражение

Теперь рассмотрим нахождение координат крайней левой точки. Нам известна площадь, которую она должна отсечь (напоминаю, речь идет о полуокружности)

Таким образом мы можем приравнять

Что дает нам такое финальное уравнение

Данное уравнение является трансцендентным, а поэтому находить координату первой точки придется численным методом, например, методом бисекции или методом Ньютона. Калькулятор использует метод Ньютона.

Вторая и последующие точки находится аналогично, путем изменения размера отсекаемой площади. Для второй точки это будет , для третьей и так далее.

Зная координаты точек, несложно рассчитать все остальные параметры, в частности, длину хорды.

Читайте также:  Авсд параллелограмм найдите все его углы

Источник

Как разделить овал пополам не имея центра?

Насколько я понял, задача практическая. На деле может оказаться важным именно ваш случай: что за материал, размеры, доступные инструменты. Как вариант, предложу пока один общий приём.

Ось симметрии (овала в том числе) обладает тем свойством, что где ни проведи к ней перпендикуляр (внутри фигуры, конечно), оба отрезка от оси до фигуры будут равны. Вот на это и будем опираться.

Мы не будем пытаться вывести точно ось симметрии математически. Вместо этого станем решать задачу методом последовательных приближений. Когда остановиться, дело ваше. Какая точность вас устроит, решать вам.

1) Проводим ось симметрии «на глаз». (См .рис. 1)
2) На оси выбираем две точки: одну в верхней половине, другую в нижней. Точки не должны находиться возле центра, а именно ближе к верху и низу. Так текущая погрешность будет виднее.
3) В выбранных точках проводим перпендикуляры к оси. Возможно, вы сделаете это достаточно точно и подручным инструментом, скажем, угольником. А точно это можно сделать математически — см. отдельно эту задачу внизу.
4) Измеряем длины отрезков. Для каждой из двух точек правило такое: с которой стороны отрезок меньше, в ту сторону и смещена точка относительно истинной оси симметрии.
5) Чуть пододвигаем концы нашей оси в нужные стороны и переходим к п. 1.

—————————————
Задача о построении перпендикуляра к прямой в заданной точке О. (См. рис. 2.)

1) В точке О проводим окружность любого радиуса.
2) В точках А и Б пересечения окружности с прямой проводим по окружности одного и того же радиуса, так чтобы эти две окружности пересекались. Радиусы могут быть любыми, в том числе равными диаметру первой окружности.
3) Соединяем точки пересечения двух окружностей — это и есть искомый перпендикуляр.
.

Источник

Деление окружности, или Геометрия для чайников

Приветствую всех мастеров и мастериц!

Очень многие из нас, учась в школе, думали, что очень многие предметы школьной программы в жизни нам никогда не понадобятся. Я так думала про геометрию. Однако жизнь сложилась так, что именно геометрия мне оказалась и нужна.

Одной из основных сложностей при создании круглого орнаменты является его симметричность. Иногда хочется, чтобу у нас был точный 8-ми гранник, иногда 5-ти конечная звезда, а иногда нужен 7-ми конечный цветок.

Эту глобальную проблему симметричного деления окружности на равное количество частей можно решить просто при помощи циркуля, линейки, листа бумаги и геометрии.

Деление окружности на 3 равных сектора.

Для начала нам понадобиться сама окружность. Рисуем ее при помощи циркуля

Выбираем на поверхности окружности любую точку, отмечаем ее карандашиком. Далее циркулем отмеряем радиус нашей окружности (кто забыл — это расстояние от центра окружности до любой ее точки)

Ставим наш циркуль с набранным радиусом в точку, которую мы на окружности отметили и проводим дугу до пересечения с нашей основной окружностью.

Через точку на окружности и центр окружность проводим линию до пересечения с гранью.

Таким образом мы получили 3 точки на нашей окружности.

Теперь из центра проводим линии, соединяя центр с этими точками и у нас образовались 3 одинаковых сектора.

Читайте также:  Какими упражнениями качать трапецию

Деление окружности на 4 равных сектора.

Начинаем опять с окружности, необходимого нам диаметра. Назову ее окружность 1.

Через центр окружности 1 проводим линию до пересечения с обеими сторонами окружности 1.

Из центра окружность 1 при помощи циркуля рисуем окружность больше диаметра — окружность 2.

Ставим ножку циркуля в точку на пересечении наше прямой линии и окружности 2 и из нее проводим дугу. Расстояние от точки на окружности до дуги равно диаметру окружности 1. (диаметр = 2 радиусам). Ту же процедуру повторяем с точкой на другой стороны окружности.

У нас есть 2 новые точки, появившиеся на пересечении дуг. Соединяем их и получаем окружность, разбитую на 4 ровных сектора.

Деление окружности на 5 равных секторов.

Начало работы с делением окружности на 5 частей очень схожа с делением окружности на 4 части, поэтому я начну уже с разделенного круга на 4 части.

Циркулем набираем радиус нашей окружности и ставим ножку в одну из имеющихся у нас точек. В моем случае это левая точка. Проводим дугу до пересечения ее с основной линии окружности.

Соединяем получившиеся точки при помощи линейки и находим новую точку пересечения (точка Н)

Циркулем набираем расстояние от верхний точки на окружности до точки Н. Ставим ножку в точку Н и проводим дугу и получаем еще одну точку (точка М)

Ставим ножку циркуля в верхнюю точку окружности и набираем расстояние до точки М.

Ставим ножку циркуля в верхнюю точку и откладываем набранное нами расстояние на нашей окружности.

Ставим циркуль в получившуюся точку и еще раз откладываем это расстояние. Таким же образом ставим еще 2 точки.

У нас получилось 4 отложенных точки и 1 верхняя точка окружности. Соединяем центр окружности с этими точками и получаем 5 равных секторов.

Деление окружности на 6 равных секторов.

Нам снова нужна окружность.

Берем любую точку на этой окружности, ставим в нее ножку циркуля с набранным расстоянием радиуса и проводим дугу до пересечения с нашей окружностью.

Далее соединяем выбранную нами точку с центром окружности и находим еще одну точку с противоположной стороны.

Из этой точки таким же расстоянием проводим еще одну дугу.

Мы получили 6 точек — 2 мы шали при помощи дуг, 1- наша выбранная и 1 найденная при помощи линейки. Соединяем их с центром и получаем 6 равных секторов.

Деление окружности на 7 равных секторов.

Чтобы не повторяться и не описывать уже знакомые алгоритмы, берем за основу момент нахождения точки Н для разбития окружности на 5 частей.

Отмеряем циркулем расстояние от точки Н до точки на окружности.

Ставим ножку циркуля в верхнюю точку и набранным на циркуле расстоянием откладываем точки, аналогично как мы делали в случае разбивки окружности на 5 частей

Соединяем наши новые точки с центром и получаем 7 равных секторов.

Используя эти простые приемы можно создавать геометрические орнаменты различной сложности

Источник

Деление окружности на любое число равных частей

Как разделить окружность на заданное количество одинаковых частей, терминология при построении окружности, деление окружности на 3, 4, 5, 6, 8, 10 частей.

Термины при построениях окружности

Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.

Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.

Читайте также:  Трапеция дворников с мотором калина 1 артикул

Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.

Части окружностей называются дугами.

Прямая СD, соединяющая две точки на окружности, называется хордой.

Прямая МN,которая имеет только одну общую точку с окружностью называется касательной.

Часть круга, ограниченная хордой СD и дугой, называется сигментом.

Часть круга, ограниченная двумя радиусами и дугой, называется сектором.

Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности.

Угол, образованный двумя радиусами КОА, называется центральным углом.

Два взаимно перпендикулярных радиуса составляют угол в 90 0 и ограничивают 1/4 окружности.

Деление окружности на 4 и 8 одинаковых частей

Проводим окружность с горизонтальной и вертикальной осями, которые делят её на 4-ре равные части. Проведённые с помощью циркуля или угольника под 45 0 , две взаимно перпендикулярные линии делят окружность на 8-мь равных частей.

Деление окружности на 3 и 6 равных частей (кратные 3 трём)

Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью. Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник. Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.

Деление окружности на 5 и 10 равных частей

Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1. Из полученной точки «а» в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке «b». Радиусом R3 из точки «1» проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника. Расстояние «b-О» даёт сторону правильного десятиугольника.

Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)

Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки «1» окружности проводим под произвольным углом к вертикальной оси прямую линию. На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра. Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные ( или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть ( N ) равных частей.

Нахождение центра дуги окружности

Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD. Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.

Источник

Поделиться с друзьями
Объясняем