- Апофема и сторона основания правильной пирамиды
- Свойства
- Нахождение объема пирамиды: формула и задачи
- Формула вычисления объема пирамиды
- 1. Общая формула
- 2. Объем правильной треугольной пирамиды
- 3. Объем правильной четырехугольной пирамиды
- 4. Объем правильной шестиугольной пирамиды
- Примеры задач
- Объемы фигур. Объем пирамиды.
- Объем треугольной пирамиды. Формулы и пример решения задачи
- Что это — треугольная пирамида?
- Правильная пирамида с треугольным основанием
- Формулы объема треугольной пирамиды
- Усеченная пирамида
- Решение задачи
Апофема и сторона основания правильной пирамиды
Свойства
Периметр основания правильной пирамиды равен произведению длины стороны основания на их удвоенное количество, а площадь – отношению количества сторон, умноженных на квадрат стороны, к четырем тангенсам угла из 180 градусов, деленных на количество сторон в основании. P=n(a+b) S=(na^2)/(4 tan〖(180°)/n〗 )
Радиус окружности, вписанной в правильный многоугольник, являющимся основанием правильной пирамиды, равен отношению стороны к двум тангенсам того же угла, а радиус окружности, описанной вокруг такого многоугольника, — отношению стороны к двум синусам. (рис.34.1,34.2) r=a/(2 tan〖(180°)/n〗 ) R=a/(2 sin〖(180°)/n〗 )
Чтобы найти внутренний угол многоугольника в основании правильной пирамиды, нужно умножить 180 градусов на отношение разности количества сторон и двух единиц к самому количеству сторон такого многоугольника. (рис.34.3) γ=180°(n-2)/n
Зная апофему и сторону основания правильной пирамиды, можно найти боковое ребро и высоту пирамиды из прямоугольных треугольников, образованных ими, через теорему Пифагора. (рис.34.4, 35.1) h=√(l^2-r^2 )=√(l^2-(a/(2 tan〖(180°)/n〗 ))^2 ) b=√(l^2+a^2/4)
Угол между апофемой и основанием легко вычислить, найдя его косинус, который равен отношению радиуса вписанной в основание окружности к апофеме, и воспользовавшись таблицами Брадиса. Угол между боковым ребром и основанием находится аналогично через косинус, как отношение радиуса окружности, описанной вокруг основания, к боковому ребру. (рис.34.4, 34.5) cosα=R/b=a/(2 sin〖(180°)/n〗 √(l^2+a^2/4)) cosβ=r/l=a/(2l tan〖(180°)/n〗 )
Чтобы найти площадь боковой поверхности пирамиды через апофему и сторону основания, необходимо сначала найти площадь одной ее грани-треугольника, и затем умножить ее на количество граней – сторон в основании. Площадь полной поверхности пирамиды будет равна сумме площади боковой поверхности и площади основания. S_(б.п.)=lan/2 S_(п.п.)=an(l/2+a/(4 tan〖(180°)/n〗 ))
Объем правильной пирамиды равен произведению площади основания на высоту, деленному на три. Подставив необходимое выражение вместо площади основания и высоты, получим форму объема пирамиды через апофему и сторону основания. V=1/3 S_(осн.) h=(na^2 √(l^2-(a/(2 tan〖(180°)/n〗 ))^2 ))/(12 tan〖(180°)/n〗 )
Чтобы вписать в правильную пирамиду сферу, ее радиус должен быть равен трем объемам, деленным на площадь полной поверхности пирамиды, а чтобы описать такую же сферу вокруг пирамиды, нужно чтобы ее радиус совпадал с отношением квадрата бокового ребра к двум высотам такой пирамиды. (рис.34.6, 34.7) r_1=3V/S_(п.п.) =(na^2 √(l^2-(a/(2 tan〖(180°)/n〗 ))^2 ))/(4 tan〖(180°)/n〗 (2l+a/tan〖(180°)/n〗 ) ) R_1=b^2/2h=(4l^2+a^2)/(8√(l^2-(a/(2 tan〖(180°)/n〗 ))^2 ))
Источник
Нахождение объема пирамиды: формула и задачи
В данной публикации мы рассмотрим, как можно найти объем пирамиды и разберем примеры решения задач для закрепления материала.
Формула вычисления объема пирамиды
1. Общая формула
Объем (V) пирамиды равняется одной третьей произведения ее высоты на площадь основания.
- ABCD – основание;
- E – вершина;
- h – высота, перпендикулярная основанию.
2. Объем правильной треугольной пирамиды
Основанием правильной треугольной пирамиды является равносторонний треугольник (ABC), площадь которого вычисляется так (а – сторона треугольника):
Подставляем данное выражение в формулу расчета объема фигуры и получаем:
3. Объем правильной четырехугольной пирамиды
Основанием правильной четырехугольной пирамиды является квадрат, площадь которого считается так: S = a 2 , где а – длина его стороны.
Следовательно, формулу объема можно представить в виде:
4. Объем правильной шестиугольной пирамиды
Основанием правильной шестиугольной пирамиды является правильный шестиугольник, площадь которого вычисляется по формуле (а – сторона основания):
С учетом этого, объем фигуры считается так:
Примеры задач
Задание 1
Найдите объем правильной треугольной пирамиды, если известно, что ее высота составляет 16 см, а длина стороны ее основания – 8 см.
Решение:
Воспользуемся соответствующей формулой, подставив в нее известные значения:
Задание 2
Высота правильной четырехугольной пирамиды равна 12 см, а сторона ее основания – 3 см. Найдите объем фигуры.
Решение:
Площадь квадрата, который является основанием пирамиды, равна 9 см 2 (3 см ⋅ 3 см). Следовательно, объем равен:
Источник
Объемы фигур. Объем пирамиды.
Пирамида — это многогранник, у которого одна грань — основание пирамиды — произвольный многоугольник, а остальные — боковые грани — треугольники с общей вершиной, называемой вершиной пирамиды.
По числу углов основания различают пирамиды треугольные, четырёхугольные и т. д. Пирамида является частным случаем конуса.
Воспользуйтесь онлайн калькулятором для расчета объема пирамиды: объем пирамиды, онлайн расчет.
Для расчета объемов других тел воспользуйтесь этим калькулятором: калькулятор объемов фигур.
Элементы пирамиды.
- апофема — высота боковой грани правильной пирамиды, проведённая из её вершины (также апофемой называют длину перпендикуляра, опущенного из середины правильного многоугольника на одну из его сторон);
- боковые грани — треугольники, сходящиеся в вершине;
- боковые ребра — общие стороны боковых граней;
- вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания;
- высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);
- диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания;
- основание — многоугольник, которому не принадлежит вершина пирамиды.
Вспомогательные формулы.
1. Боковая поверхность — это сумма площадей боковых граней:
2. Полная поверхность — это сумма площади боковой поверхности и площади основания:
3. Боковая поверхность — это сумма площадей боковых граней:
P — периметр основания,
n — число сторон основания,
b — боковое ребро,
α — плоский угол при вершине пирамиды.
Общая формула, по которой можно найти объем пирамиды.
Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS)
, где
S – площадь основания пирамиды,
h – высота пирамиды
— объём параллелепипеда;
Правильная пирамида.
Правильная пирамида — пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.
Формула для вычисления объема правильной пирамиды:
h — высота пирамиды
a — сторона основания пирамиды
n — количество сторон многоугольника в основании
Правильная четырехугольная пирамида.
Правильная четырехугольная пирамида — пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.
Формула для определения объема правильной четырехугольной пирамиды:
h — высота пирамиды
a — сторона основания пирамиды