Как найти объем зная апофему

Апофема и сторона основания правильной пирамиды

Свойства

Периметр основания правильной пирамиды равен произведению длины стороны основания на их удвоенное количество, а площадь – отношению количества сторон, умноженных на квадрат стороны, к четырем тангенсам угла из 180 градусов, деленных на количество сторон в основании. P=n(a+b) S=(na^2)/(4 tan⁡〖(180°)/n〗 )

Радиус окружности, вписанной в правильный многоугольник, являющимся основанием правильной пирамиды, равен отношению стороны к двум тангенсам того же угла, а радиус окружности, описанной вокруг такого многоугольника, — отношению стороны к двум синусам. (рис.34.1,34.2) r=a/(2 tan⁡〖(180°)/n〗 ) R=a/(2 sin⁡〖(180°)/n〗 )

Чтобы найти внутренний угол многоугольника в основании правильной пирамиды, нужно умножить 180 градусов на отношение разности количества сторон и двух единиц к самому количеству сторон такого многоугольника. (рис.34.3) γ=180°(n-2)/n

Зная апофему и сторону основания правильной пирамиды, можно найти боковое ребро и высоту пирамиды из прямоугольных треугольников, образованных ими, через теорему Пифагора. (рис.34.4, 35.1) h=√(l^2-r^2 )=√(l^2-(a/(2 tan⁡〖(180°)/n〗 ))^2 ) b=√(l^2+a^2/4)

Угол между апофемой и основанием легко вычислить, найдя его косинус, который равен отношению радиуса вписанной в основание окружности к апофеме, и воспользовавшись таблицами Брадиса. Угол между боковым ребром и основанием находится аналогично через косинус, как отношение радиуса окружности, описанной вокруг основания, к боковому ребру. (рис.34.4, 34.5) cos⁡α=R/b=a/(2 sin⁡〖(180°)/n〗 √(l^2+a^2/4)) cos⁡β=r/l=a/(2l tan⁡〖(180°)/n〗 )

Чтобы найти площадь боковой поверхности пирамиды через апофему и сторону основания, необходимо сначала найти площадь одной ее грани-треугольника, и затем умножить ее на количество граней – сторон в основании. Площадь полной поверхности пирамиды будет равна сумме площади боковой поверхности и площади основания. S_(б.п.)=lan/2 S_(п.п.)=an(l/2+a/(4 tan⁡〖(180°)/n〗 ))

Объем правильной пирамиды равен произведению площади основания на высоту, деленному на три. Подставив необходимое выражение вместо площади основания и высоты, получим форму объема пирамиды через апофему и сторону основания. V=1/3 S_(осн.) h=(na^2 √(l^2-(a/(2 tan⁡〖(180°)/n〗 ))^2 ))/(12 tan⁡〖(180°)/n〗 )

Чтобы вписать в правильную пирамиду сферу, ее радиус должен быть равен трем объемам, деленным на площадь полной поверхности пирамиды, а чтобы описать такую же сферу вокруг пирамиды, нужно чтобы ее радиус совпадал с отношением квадрата бокового ребра к двум высотам такой пирамиды. (рис.34.6, 34.7) r_1=3V/S_(п.п.) =(na^2 √(l^2-(a/(2 tan⁡〖(180°)/n〗 ))^2 ))/(4 tan⁡〖(180°)/n〗 (2l+a/tan⁡〖(180°)/n〗 ) ) R_1=b^2/2h=(4l^2+a^2)/(8√(l^2-(a/(2 tan⁡〖(180°)/n〗 ))^2 ))

Источник

Нахождение объема пирамиды: формула и задачи

В данной публикации мы рассмотрим, как можно найти объем пирамиды и разберем примеры решения задач для закрепления материала.

Формула вычисления объема пирамиды

1. Общая формула

Объем (V) пирамиды равняется одной третьей произведения ее высоты на площадь основания.

Читайте также:  Гвд ускорение гильдии рабочих

  • ABCD – основание;
  • E – вершина;
  • h – высота, перпендикулярная основанию.

2. Объем правильной треугольной пирамиды

Основанием правильной треугольной пирамиды является равносторонний треугольник (ABC), площадь которого вычисляется так (а – сторона треугольника):

Подставляем данное выражение в формулу расчета объема фигуры и получаем:

3. Объем правильной четырехугольной пирамиды

Основанием правильной четырехугольной пирамиды является квадрат, площадь которого считается так: S = a 2 , где а – длина его стороны.

Следовательно, формулу объема можно представить в виде:

4. Объем правильной шестиугольной пирамиды

Основанием правильной шестиугольной пирамиды является правильный шестиугольник, площадь которого вычисляется по формуле (а – сторона основания):

С учетом этого, объем фигуры считается так:

Примеры задач

Задание 1
Найдите объем правильной треугольной пирамиды, если известно, что ее высота составляет 16 см, а длина стороны ее основания – 8 см.

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные значения:

Задание 2
Высота правильной четырехугольной пирамиды равна 12 см, а сторона ее основания – 3 см. Найдите объем фигуры.

Решение:
Площадь квадрата, который является основанием пирамиды, равна 9 см 2 (3 см ⋅ 3 см). Следовательно, объем равен:

Источник

Объемы фигур. Объем пирамиды.

Пирамида — это многогранник, у которого одна грань — основание пирамиды — произвольный многоугольник, а остальные — боковые грани — треугольники с общей вершиной, называемой вершиной пирамиды.

По числу углов основания различают пирамиды треугольные, четырёхугольные и т. д. Пирамида является частным случаем конуса.

Воспользуйтесь онлайн калькулятором для расчета объема пирамиды: объем пирамиды, онлайн расчет.

Для расчета объемов других тел воспользуйтесь этим калькулятором: калькулятор объемов фигур.

Элементы пирамиды.

  • апофема — высота боковой грани правильной пирамиды, проведённая из её вершины (также апофемой называют длину перпендикуляра, опущенного из середины правильного многоугольника на одну из его сторон);
  • боковые грани — треугольники, сходящиеся в вершине;
  • боковые ребра — общие стороны боковых граней;
  • вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания;
  • высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);
  • диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания;
  • основание — многоугольник, которому не принадлежит вершина пирамиды.

Вспомогательные формулы.

1. Боковая поверхность — это сумма площадей боковых граней:

2. Полная поверхность — это сумма площади боковой поверхности и площади основания:

3. Боковая поверхность — это сумма площадей боковых граней:

P — периметр основания,

n — число сторон основания,

b — боковое ребро,

α — плоский угол при вершине пирамиды.

Общая формула, по которой можно найти объем пирамиды.

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS)

, где

S – площадь основания пирамиды,

h – высота пирамиды

— объём параллелепипеда;

Правильная пирамида.

Правильная пирамида — пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.

Читайте также:  Как лучше увеличить объем волос

Формула для вычисления объема правильной пирамиды:

h — высота пирамиды

a — сторона основания пирамиды

n — количество сторон многоугольника в основании

Правильная треугольная пирамида.

Правильная треугольная пирамида — пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.

Формула для нахождения объема правильной треугольной пирамиды:

h — высота пирамиды

a — сторона основания пирамиды

Правильная четырехугольная пирамида.

Правильная четырехугольная пирамида — пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.

Формула для определения объема правильной четырехугольной пирамиды:

h — высота пирамиды

a — сторона основания пирамиды

Тетраэдр.

Тетраэдр — пирамида, у которой все грани — равносторонние треугольники.

Формулы для вычисления объема тетраэдра:

a — ребро тетраэдра

— скрещивающиеся рёбра, — расстояние между a1 и a2, — угол между a1 и a2;

Усеченная пирамида.

Сечение параллельное основанию пирамиды делит пирамиду на две части. Часть пирамиды между ее основанием и этим сечением — это усеченная пирамида.

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1 (abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.

S1 — площадь верхнего основания усеченной пирамиды,

S2 — площадь нижнего основания усеченной пирамиды,

Источник

Объем треугольной пирамиды. Формулы и пример решения задачи

Главной характеристикой любой геометрической фигуры в пространстве является ее объем. В данной статье рассмотрим, что собой представляет пирамида с треугольником в основании, а также покажем, как находить объем треугольной пирамиды — правильной полной и усеченной.

Что это — треугольная пирамида?

Каждый слышал о древних египетских пирамидах, тем не менее они являются четырехугольными правильными, а не треугольными. Объясним, как получить треугольную пирамиду.

Возьмем произвольный треугольник и соединим все его вершины с некоторой одной точкой, расположенной вне плоскости этого треугольника. Образованная фигура будет называться треугольной пирамидой. Она показана на рисунке ниже.

Вам будет интересно: Как мыться в русской печи: описание обычая, исторические факты

Как видно, рассматриваемая фигура образована четырьмя треугольниками, которые в общем случае являются разными. Каждый треугольник — это стороны пирамиды или ее грань. Эту пирамиду часто называют тетраэдром, то есть четырехгранной объемной фигурой.

Помимо сторон, пирамида также обладает ребрами (их у нее 6) и вершинами (их 4).

Правильная пирамида с треугольным основанием

Фигура, которая получена с использованием произвольного треугольника и точки в пространстве, будет неправильной наклонной пирамидой в общем случае. Теперь представим, что исходный треугольник имеет одинаковые стороны, а точка пространства расположена точно над его геометрическим центром на расстоянии h от плоскости треугольника. Построенная с использованием этих исходных данных пирамида будет правильной.

Очевидно, что число ребер, сторон и вершин у правильной треугольной пирамиды будет таким же, как у пирамиды, построенной из произвольного треугольника.

Однако правильная фигура обладает некоторыми отличительными чертами:

  • ее высота, проведенная из вершины, точно пересечет основание в геометрическом центре (точка пересечения медиан);
  • боковая поверхность такой пирамиды образована тремя одинаковыми треугольниками, которые являются равнобедренными или равносторонними.

Правильная треугольная пирамида является не только чисто теоретическим геометрическим объектом. Некоторые структуры в природе имеют ее форму, например кристаллическая решетка алмаза, где атом углерода соединен с четырьмя такими же атомами ковалентными связями, или молекула метана, где вершины пирамиды образованы атомами водорода.

Формулы объема треугольной пирамиды

Определить объем совершенно любой пирамиды с произвольным n-угольником в основании можно с помощью следующего выражения:

Здесь символ So обозначает площадь основания, h — это высота фигуры, проведенная к отмеченному основанию из вершины пирамиды.

Поскольку площадь произвольного треугольника равна половине произведения длины его стороны a на апофему ha, опущенную на эту сторону, то формула объема треугольной пирамиды может быть записана в следующем виде:

V = 1/6 × a × ha × h

Для треугольной пирамиды общего типа определение высоты является непростой задачей. Для ее решения проще всего воспользоваться формулой расстояния между точкой (вершиной) и плоскостью (треугольным основанием), представленной уравнением общего вида.

Для правильной пирамиды формула объема имеет конкретный вид. Площадь основания (равностороннего треугольника) для нее равна:

Подставляем ее в общее выражение для V, получаем:

Частным случаем является ситуация, когда у тетраэдра все стороны оказываются одинаковыми равносторонними треугольниками. В этом случае определить его объем можно, только исходя из знания параметра его ребра a. Соответствующее выражение имеет вид:

Усеченная пирамида

Если верхнюю часть, содержащую вершину, отсечь у правильной треугольной пирамиды, то получится усеченная фигура. В отличие от исходной она будет состоять из двух равносторонних треугольных оснований и трех равнобедренных трапеций.

Ниже на фото показано, как выглядит правильная усеченная пирамида треугольная, изготовленная из бумаги.

Для определения объема треугольной пирамиды усеченной необходимо знать три ее линейных характеристики: каждую из сторон оснований и высоту фигуры, равную расстоянию между верхним и нижним основаниями. Соответствующая формула для объема записывается так:

V = √3/12 × h × (A2 + a2 + A × a)

Здесь h — высота фигуры, A и a — длины сторон большого (нижнего) и малого (верхнего) равносторонних треугольников соответственно.

Решение задачи

Чтобы приведенная информация в статье была понятнее для читателя, покажем на наглядном примере, как пользоваться некоторыми из записанных формул.

Пусть объем треугольной пирамиды равен 15 см3. Известно, что фигура является правильной. Следует найти апофему ab бокового ребра, если известно, что высота пирамиды составляет 4 см.

Поскольку известны объем и высота фигуры, то можно воспользоваться соответствующей формулой для вычисления длины стороны ее основания. Имеем:

a = 12 × V / (√3 × h) = 12 × 15 / (√3 × 4) = 25,98 см

Апофему ab можно рассчитать, если рассмотреть соответствующий прямоугольный треугольник внутри пирамиды. Катетами треугольника являются 1/3 длины высоты основания и высота пирамиды, гипотенузой будет искомая апофема. Тогда:

ab = √(h2 + a2 / 12) = √(16 + 25,982 / 12) = 8,5 см

Рассчитанная длина апофемы фигуры получилась больше ее высоты, что справедливо для пирамиды любого типа.

Источник

Читайте также:  Вычислите объем хлора который потребуется для полного хлорирования 4л метана 3л этана
Поделиться с друзьями
Объясняем