Как найти объем прямой призмы основанием которой служит данный четырехугольник

Содержание
  1. Нахождение объема призмы: формула и задачи
  2. Формула вычисления объема призмы
  3. Примеры задач
  4. Объем четырехугольной призмы: как вычислить, формулы и примеры
  5. Что собой представляет призма четырехугольная?
  6. Наклонная призма с неправильным основанием
  7. Правильная фигура и ее объем
  8. Задача с правильной фигурой
  9. Вывод
  10. Объём и площадь поверхности правильной четырёхугольной призмы
  11. Как выглядит призма
  12. Площадь поверхности и объём
  13. Нахождение элементов призмы
  14. Примеры задач с решениями
  15. Геометрические фигуры
  16. Объём призмы
  17. Что такое треугольная призма?
  18. Формула объема треугольной призмы правильной
  19. Элементы треугольной призмы
  20. Найти объем призмы, зная площадь основания и высоту
  21. Найти объем правильной треугольной призмы, зная ребра
  22. Объем правильной фигуры через значение ее диагонали
  23. Виды призм
  24. Определение
  25. Вычисление объема правильной пятиугольной призмы
  26. Формула вычисления объема призмы
  27. Необычная формула объёма призмы
  28. Как рассчитывать объем фигуры произвольного типа?
  29. Вычисление объема трапецеидальной призмы
  30. Основные свойства призмы
  31. Объем треугольной призмы общего типа
  32. Площадь поверхности призмы
  33. Пример призмы
  34. Объем прямой фигуры с прямоугольным треугольником в основании
  35. Задачи на расчет треугольной призмы

Нахождение объема призмы: формула и задачи

В данной публикации мы рассмотрим, как можно найти объем призмы и разберем примеры решения задач для закрепления материала.

Формула вычисления объема призмы

Объем призмы равняется произведению площади ее основания на высоту.

V = Sосн ⋅ h

  • Sосн – площадь основания, т.е. в нашем случае – четырехугольника ABCD или EFGH (равны между собой);
  • h – высота призмы.

Приведенная выше формула подходит для следующих видов призм:

  • прямой – боковые ребра перпендикулярны основанию;
  • правильной – прямая призма, основанием которой является правильный многоугольник;
  • наклонной – боковые ребра расположены под углом по отношению к основанию.

Примеры задач

Задание 1
Найдите объем призмы, если известно, что площадь ее основания равна 14 см 2 , а высота – 6 см.

Решение:
Подставляем в формулу известные нам значения и получаем:
V = 14 см 2 ⋅ 6 см = 84 см 3 .

Задание 2
Объем призмы равняется 106 см 3 . Найдите ее высоту, если известно, что площадь основания составляет 10 см 2 .

Решение:
Из формулы расчета объема следует, что высота равняется объему, разделенному на площадь основания:
h = V / Sосн = 106 см 3 / 10 см 2 = 10,6 см.

Источник

Объем четырехугольной призмы: как вычислить, формулы и примеры

Рассмотрим как вычислить объем четырехугольной призмы с формулами и примерами.

Стереометрия является важной частью общего курса геометрии, которая рассматривает характеристики пространственных фигур. Одной из таких фигур является четырехугольная призма. В данной статье подробнее раскроем вопрос, как рассчитывать объем призмы четырехугольной.

Что собой представляет призма четырехугольная?

Очевидно, что прежде чем приводить формулу объема призмы четырехугольной, необходимо дать ясное определение этой геометрической фигуры. Под такой призмой понимают трехмерный многогранник, который ограничен двумя произвольными одинаковыми четырехугольниками, лежащими в параллельных плоскостях, и четырьмя параллелограммами.

Отмеченные параллельные друг другу четырехугольники называются основаниями фигуры, а четыре параллелограмма — это боковые стороны. Здесь следует пояснить, что параллелограммы также являются четырехугольниками, однако основания не всегда являются параллелограммами. Пример неправильного четырехугольника, который вполне может быть основанием призмы, показан ниже на рисунке.

Любая четырехугольная призма состоит из 6 сторон, 8 вершин и 12 ребер. Существуют четырехугольные призмы разных видов. Например, фигура может быть наклонной или прямой, неправильной и правильной. Далее в статье покажем, как можно рассчитывать объем призмы четырехугольной с учетом ее вида.

Наклонная призма с неправильным основанием

Это самый несимметричный вид четырехугольной призмы, поэтому расчет ее объема будет относительно сложным. Определить объем фигуры позволяет следующее выражение:

Символом So здесь обозначена площадь основания. Если это основание представляет собой ромб, параллелограмм или прямоугольник, то рассчитать величину So несложно. Так, для ромба и параллелограмма справедлива формула:

где a — сторона основания, ha — длина опущенной на эту сторону из вершины основания высоты.

Если основание представляет собой неправильный многоугольник (см. выше), то его площадь следует разбить на более простые фигуры (например, треугольники), вычислить их площади и найти их сумму.

В формуле для объема символом h обозначена высота призмы. Она представляет собой длину перпендикулярного отрезка между двумя основаниями. Поскольку призма является наклонной, то расчет высоты h следует проводить с использованием длины бокового ребра b и двугранных углов между боковыми гранями и основанием.

Правильная фигура и ее объем

Если основанием четырехугольной призмы является квадрат, а сама фигура будет прямой, то она называется правильной. Следует пояснить, что прямой призма называется тогда, когда все ее боковые стороны являются прямоугольниками и каждый из них перпендикулярен основаниям. Правильная фигура показана ниже.

Объем правильной четырехугольной призмы может быть вычислен по той же формуле, что и объем неправильной фигуры. Поскольку основанием является квадрат, то его площадь вычисляется просто:

Высота призмы h равна длине бокового ребра b (сторона прямоугольника). Тогда объем правильной призмы четырехугольной может быть рассчитан по следующей формуле:

Правильная призма с квадратным основанием называется прямоугольным параллелепипедом. Этот параллелепипед в случае равенства сторон a и b становится кубом. Объем последнего рассчитывается так:

Записанные формулы для объема V свидетельствуют о том, что чем выше симметрия фигуры, тем меньше линейных параметров требуется для вычисления этой величины. Так, в случае правильной призмы необходимое число параметров равно двум, а в случае куба — одному.

Задача с правильной фигурой

Рассмотрев вопрос нахождения объема призмы четырехугольной с точки зрения теории, применим полученные знания на практике.

Известно, что правильный параллелепипед имеет длину диагонали основания, равную 12 см. Длина диагонали его боковой стороны составляет 20 см. Необходимо рассчитать объем параллелепипеда.

Обозначим диагональ основания символом da, а диагональ боковой грани — символом db. Для диагонали da справедливы выражения:

Что касается величины db, то она является диагональю прямоугольника со сторонами a и b. Для нее можно записать следующие равенства:

Подставляя в последнее равенство найденное выражение для a, получим:

Теперь можно подставить полученные формулы в выражение для объема правильной фигуры:

Заменив da и db числами из условия задачи, приходим к ответу: V ≈ 1304 см 3 .

Вывод

Мы рассмотрели как найти объем четырехугольной призмы, а так же формулы, которые используются для нахождения объёма.

Источник

Объём и площадь поверхности правильной четырёхугольной призмы

В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела — многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях. Частным случаем является правильная четырёхугольная призма. Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).

Как выглядит призма

Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры — прямой параллелепипед.

Рисунок, на котором изображена четырёхугольная призма, показан ниже.

На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело. К ним принято относить:

  1. Основы призмы — квадраты LMNO и L₁M₁N₁O₁.
  2. Боковые грани — прямоугольники MM₁L₁L, LL₁O₁O, NN₁O₁O и MM₁N₁N, расположенные под прямым углом к основаниям.
  3. Боковые рёбра — отрезки, расположенные на стыке между двумя боковыми гранями: M₁M, N₁N, O₁O и L₁L. Также выполняют роль высоты (поскольку лежат в параллельной основаниям плоскости). В призме боковые рёбра всегда равны между собой — это одно из важнейших свойств этого геометрического тела.
  4. Диагонали, которые, в свою очередь, подразделяются ещё на 3 категории. К ним относится 4 диагонали основания (MO, N₁L₁), 8 диагоналей боковых граней (ML₁, O₁L) и 4 диагонали призмы, начала и концы которых являются вершинами 2 разных оснований и боковых сторон (MO₁, N₁L).

Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение — это все точки объёмного тела, принадлежащие секущей плоскости. Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов). Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить — 2), проходящее через 2 ребра и диагонали основания.

Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.

Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).

Площадь поверхности и объём

Чтобы определить объём призмы по формуле, необходимо знать площадь её основания и высоту:

Так как основанием правильной четырёхгранной призмы является квадрат со стороной a, можно записать формулу в более подробном виде:

Если речь идёт о кубе — правильной призме с равной длиной, шириной и высотой, объём вычисляется так:

Чтобы понять, как найти площадь боковой поверхности призмы, необходимо представить себе её развёртку.

Из чертежа видно, что боковая поверхность составлена из 4 равных прямоугольников. Её площадь вычисляется как произведение периметра основания на высоту фигуры:

С учётом того, что периметр квадрата равен P = 4a, формула принимает вид:

Для вычисления площади полной поверхности призмы нужно к боковой площади прибавить 2 площади оснований:

Sполн = Sбок + 2Sосн

Применительно к четырёхугольной правильной призме формула имеет вид:

Для площади поверхности куба:

Зная объём или площадь поверхности, можно вычислить отдельные элементы геометрического тела.

Нахождение элементов призмы

Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:

  • длина стороны основания: a = Sбок / 4h = √(V / h),
  • длина высоты или бокового ребра: h = Sбок / 4a = V / a²,
  • площадь основания: Sосн = V / h,
  • площадь боковой грани: Sбок. гр = Sбок / 4.

Чтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2. Из этого следует:

Для вычисления диагонали призмы используется формула:

Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.

Примеры задач с решениями

Вот несколько заданий, встречающихся в государственных итоговых экзаменах по математике.

В коробку, имеющую форму правильной четырёхугольной призмы, насыпан песок. Высота его уровня составляет 10 см. Каким станет уровень песка, если переместить его в ёмкость такой же формы, но с длиной основания в 2 раза больше?

Следует рассуждать следующим образом. Количество песка в первой и второй ёмкости не изменялось, т. е. его объём в них совпадает. Можно обозначить длину основания за a. В таком случае для первой коробки объём вещества составит:

Для второй коробки длина основания составляет 2a, но неизвестна высота уровня песка:

Поскольку V₁ = V₂, можно приравнять выражения:

После сокращения обеих частей уравнения на a² получается:

В результате новый уровень песка составит h = 10 / 4 = 2,5 см.

ABCDA₁B₁C₁D₁ правильная призма. Известно, что BD = AB₁ = 6√2. Найти площадь полной поверхности тела.

Чтобы было проще понять, какие именно элементы известны, можно изобразить фигуру.

Поскольку речь идёт о правильной призме, можно сделать вывод, что в основании находится квадрат с диагональю 6√2. Диагональ боковой грани имеет такую же величину, следовательно, боковая грань тоже имеет форму квадрата, равного основанию. Получается, что все три измерения — длина, ширина и высота — равны. Можно сделать вывод, что ABCDA₁B₁C₁D₁ является кубом.

Длина любого ребра определяется через известную диагональ:

a = d / √2 = 6√2 / √2 = 6

Площадь полной поверхности находится по формуле для куба:

Sполн = 6a² = 6·6² = 216

В комнате производится ремонт. Известно, что её пол имеет форму квадрата с площадью 9 м². Высота помещения составляет 2,5 м. Какова наименьшая стоимость оклейки комнаты обоями, если 1 м² стоит 50 рублей?

Поскольку пол и потолок являются квадратами, т. е. правильными четырёхугольниками, и стены её перпендикулярны горизонтальным поверхностям, можно сделать вывод, что она является правильной призмой. Необходимо определить площадь её боковой поверхности.

Длина комнаты составляет a = √9 = 3 м.

Обоями будет оклеена площадь Sбок = 4·3·2,5 = 30 м².

Наименьшая стоимость обоев для этой комнаты составит 50·30 = 1500 рублей.

Таким образом, для решения задач на прямоугольную призму достаточно уметь вычислять площадь и периметр квадрата и прямоугольника, а также владеть формулами для нахождения объёма и площади поверхности.

Источник

Геометрические фигуры

Объём призмы

Что такое треугольная призма?

Перед тем как приводить формулу объема треугольной призмы, рассмотрим свойства этой фигуры.

Чтобы получить этот вид призмы, необходимо взять треугольник произвольной формы и параллельно самому себе перенести его на некоторое расстояние. Вершины треугольника в начальном и конечном положении следует соединить прямыми отрезками. Полученная объемная фигура называется треугольной призмой. Она состоит из пяти сторон. Две из них называются основаниями: они параллельны и равны друг другу. Основаниями рассматриваемой призмы являются треугольники. Три оставшиеся стороны – это параллелограммы.

Помимо сторон, рассматриваемая призма характеризуется шестью вершинами (по три для каждого основания) и девятью ребрами (6 ребер лежат в плоскостях оснований и 3 ребра образованы пересечением боковых сторон). Если боковые ребра перпендикулярны основаниям, то такая призма называется прямоугольной.

Отличие треугольной призмы от всех остальных фигур этого класса заключается в том, что она всегда является выпуклой (четырех-, пяти-, …, n-угольные призмы могут также быть вогнутыми).

Правильная треугольная призма – это прямоугольная фигура, в основании которой лежит равносторонний треугольник.

Формула объема треугольной призмы правильной

Многогранник, который мы изучаем, будет правильным, если две его грани являются одинаковыми треугольниками равносторонними и три грани — это одинаковые прямоугольники. Формулу для объема такой призмы несложно получить из выражения общего вида, записанного в пункте выше. Чтобы это сделать, рассчитаем сначала площадь основания:

So = 1 / 2 × ha × a = 1 / 2 × √3 / 2 × a × a = √3 / 4 × a2

Значение высоты треугольника ha получено, исходя из того факта, что для равностороннего основания она является также медианой и биссектрисой. Таким образом, площадь So является функцией только одного параметра (стороны a).

Формулу объема для изучаемой призмы можно получить, если умножить на высоту выражение выше:

Поскольку для рассматриваемой фигуры высота равна длине бокового ребра b, то полученное выражение также можно переписать через параметры a и b.

Элементы треугольной призмы

Треугольники ABC и A1B1C1 являются основаниями призмы .

Четырехугольники A1B1BA, B1BCC1 и A1C1CA являются боковыми гранями призмы .

Стороны граней являются ребрами призмы (A1B1, A1C1, C1B1, AA1, CC1, BB1, AB, BC, AC), всего у треугольной призмы 9 граней.

Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).

Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.

Площадь основания — это площадь треугольной грани призмы.

Площадь боковой поверхности призмы — это сумма площадей четырехугольных граней призмы.

Найти объем призмы, зная площадь основания и высоту

Найти объем правильной треугольной призмы, зная ребра

Объем правильной фигуры через значение ее диагонали

Треугольная призма является самой простой фигурой из своего класса, поэтому она обладает всего одним единственным типом диагонали. Это диагонали трех ее параллелограммов.

Предположим, что имеется правильная фигура, диагональ которой равна d (это диагональ прямоугольника), а высота равна h. Как рассчитать ее объем?

Для начала следует определить значение стороны основания a. Для этого воспользуемся теоремой Пифагора:

Тогда формула объема треугольной призмы приобретает вид:

V = √3 / 4 × a2 × h = √3 / 4 × (d2 — h2) × h

В случае правильной призмы объем всегда является функцией двух параметров (h и d в данном выражении).

Виды призм

  • Прямая призма – это призма, в которой все боковые грани перпендикулярны к основанию. Высота равна длине бокового ребра.
  • Наклонная призма – это призма, в которой боковые грани не перпендикулярны к основанию.
  • Правильная призма – это призма, в которой основания являются правильными многоугольниками. Правильная призма может быть, как прямой, так и наклонной.
  • Усечённая призма – это призма, в которой основания не параллельны друг другу. Усечённая призма может быть, как прямой, так наклонной.

Определение

Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.

Вычисление объема правильной пятиугольной призмы

  • Больше информации о том, как найти апофему, если она не дана, можно найти здесь . [5]

  • А = 1/2 х 5 х сторона х апофема.
  • А= 1/2 х 5 х 6 см х 7 см = 105 см 2 .

  • 105 см 2 x 10 см = 1050 см 3 .

Формула вычисления объема призмы

Объем призмы равняется произведению площади ее основания на высоту.

V = Sосн ⋅ h

  • Sосн – площадь основания, т.е. в нашем случае – четырехугольника ABCD или EFGH (равны между собой);
  • h – высота призмы.

Приведенная выше формула подходит для следующих видов призм:

  • прямой – боковые ребра перпендикулярны основанию;
  • правильной – прямая призма, основанием которой является правильный многоугольник;
  • наклонной – боковые ребра расположены под углом по отношению к основанию.

Необычная формула объёма призмы

Представь себе, есть ещё одна, «перевёрнутая» формула для объёма призмы .

– площадь сечения, перпендикулярного боковому ребру,

– длина бокового ребра.

Используется ли эта формула в задачах? Честно говоря, довольно редко, так что можешь ограничиться знанием основной формулы объёма.

Давай теперь для упражнения посчитаем объём самых популярных призм.

Как рассчитывать объем фигуры произвольного типа?

Часть пространства, которая ограничена плоскими сторонами геометрической фигуры, называется ее объемом. В общем случае для призмы абсолютно любого типа справедлива следующая формула для определения ее объема:

Как видно, она очень проста и содержит всего два множителя: So — площадь одного основания, h — высота призмы, то есть дистанция между ее основаниями.

Применительно к треугольной призме произвольной формы (наклонной и неправильной), для вычисления величины So можно воспользоваться универсальной формулой для треугольника:

Здесь a — сторона треугольника, ha — высота треугольника, опущенная на сторону a.

Расчет высоты h призмы можно провести с использованием теоремы Пифагора, если знать длину бокового ребра b и двугранные углы между основанием и боковыми гранями.

Вычисление объема трапецеидальной призмы

  • Например, основание1 = 8 см, основание2 = 6 см, а высота = 10 см.
  • 1/2 х ( 6 + 8 ) х 10 = 1/2 х 14 см х 10 см = 70 см 2 .

  • 70 см 2 x 12 см = 840 см 3 .

Основные свойства призмы

  • Основание призмы – равные многоугольники
  • Высота прямой призмы равна длине бокового ребра.
  • Боковые ребра призмы параллельны и равны между собой.
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и боковым граням.
  • Боковые грани призмы – параллелограммы
  • Высота наклонной призмы всегда меньше длины ребра.
  • В прямой призме грани могут быть прямоугольниками или квадратами.

Объем треугольной призмы общего типа

Как найти объем треугольной призмы? Формула в общем виде аналогична таковой для призмы любого вида. Она имеет такую математическую запись:

Здесь h – это высота фигуры, то есть расстояние между ее основаниями, So – площадь треугольника.

Величину So можно найти, если известны некоторые параметры для треугольника, например одна его сторона и два угла или две стороны и один угол. Площадь треугольника равна половине произведения его высоты на длину стороны, на которую опущена эта высота.

Что касается высоты h фигуры, то ее проще всего найти для прямоугольной призмы. В последнем случае h совпадает с длиной бокового ребра.

Площадь поверхности призмы

Формула. Площадь поверхности правильной призмы через высоту ( h ), длину стороны ( a ) и количество сторон ( n ):

S = n a 2 ctg π + nah
2 n

Пример призмы

В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.

Объем прямой фигуры с прямоугольным треугольником в основании

Прямоугольный треугольник представляет собой фигуру из трех сторон, две из которых пересекаются под прямым углом. Эти стороны называются катетами. Обозначим их a1 и a2. Третья сторона называется гипотенузой (a3). Из планиметрии известно каждому школьнику, что если взять половину произведения катетов, то можно получить площадь рассматриваемого треугольника, то есть:

Так как призма является прямой, то достаточно умножить на So длину ее бокового ребра b, чтобы получить объем фигуры:

Задачи на расчет треугольной призмы

Задача 1. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S — площадь основания, а h — боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:

V = 1/2 · 6 · 8 · 5 = 120.

Задача 2.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.

Решение:

Объём призмы равен произведению площади основания на высоту: V = Sосн ·h.

Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S2 = S1k 2 = S12 2 = 4S1.

Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.

Источник

Читайте также:  Как найти объем параллелепипеда гранью которого является ромб
Поделиться с друзьями
Объясняем