Как найти объем правильной 4 угольной пирамиды

Содержание
  1. Объем четырехугольной пирамиды
  2. Нахождение объема пирамиды: формула и задачи
  3. Формула вычисления объема пирамиды
  4. 1. Общая формула
  5. 2. Объем правильной треугольной пирамиды
  6. 3. Объем правильной четырехугольной пирамиды
  7. 4. Объем правильной шестиугольной пирамиды
  8. Примеры задач
  9. Формула объема пирамиды
  10. Элементы пирамиды
  11. Объем пирамиды через площадь основания и высоту
  12. Калькулятор объема пирамиды через площадь основания и высоту
  13. Объём усечённой пирамиды
  14. Калькулятор объема усечённой пирамиды
  15. Объём правильной пирамиды
  16. Калькулятор объёма правильной пирамиды
  17. Объём правильной треугольной пирамиды
  18. Калькулятор объёма правильной треугольной пирамиды
  19. Объём правильной четырёхугольной пирамиды
  20. Калькулятор объёма правильной четырёхугольной пирамиды
  21. Объём тетраэдра
  22. Объем пирамиды
  23. Объем пирамиды — коротко о главном
  24. Что такое пирамида
  25. Высота пирамиды
  26. Правильная пирамида
  27. Шестиугольная правильная пирамида
  28. Четырехугольная правильная пирамида
  29. Треугольная правильная пирамида
  30. Очень важные свойства правильной пирамиды
  31. Объем пирамиды
  32. Главная формула объема пирамиды
  33. Объем правильной треугольной пирамиды
  34. Объем правильной четырехугольной пирамиды
  35. Объем правильной шестиугольной пирамиды
  36. Бонус: Вебинар из нашего курса подготовки к ЕГЭ по математике
  37. ЕГЭ №14. Стереометрия. Пирамида. Разбор варианта профильного ЕГЭ 2020

Объем четырехугольной пирамиды

Четырехугольной пирамидой называется многогранник, в основании которого лежит квадрат, а все боковые грани являются одинаковыми равнобедренными треугольниками.

У данного многогранника есть множество различных свойств:

  • Его боковые ребра и прилегающие к ним двугранные углы равны между собой;
  • Площади боковых граней одинаковы;
  • В основании правильной четырехугольной пирамиды лежит квадрат;
  • Высота, опущенная из вершины пирамиды, пересекается с точкой пересечения диагоналей основания.

Все эти свойства помогают легко находить площадь четырехугольной пирамиды. Однако довольно часто помимо нее требуется рассчитать объем многогранника. Для этого применяется формула объема четырехугольной пирамиды:

То есть объем пирамиды равен одной третьей произведения высоты пирамиды на площадь основания. Так как площадь квадрата равна произведению его равных сторон, то мы сразу вписываем в выражение объема формулу площади квадрата.
Рассмотрим пример расчета объема четырехугольной пирамиды.

Вот таким образом, зная несколько простых формул, мы смогли рассчитать объем правильной четырехугольной пирамиды. Не забывайте, что данная величина измеряется в кубических единицах.

Источник

Нахождение объема пирамиды: формула и задачи

В данной публикации мы рассмотрим, как можно найти объем пирамиды и разберем примеры решения задач для закрепления материала.

Формула вычисления объема пирамиды

1. Общая формула

Объем (V) пирамиды равняется одной третьей произведения ее высоты на площадь основания.

  • ABCD – основание;
  • E – вершина;
  • h – высота, перпендикулярная основанию.

2. Объем правильной треугольной пирамиды

Основанием правильной треугольной пирамиды является равносторонний треугольник (ABC), площадь которого вычисляется так (а – сторона треугольника):

Подставляем данное выражение в формулу расчета объема фигуры и получаем:

3. Объем правильной четырехугольной пирамиды

Основанием правильной четырехугольной пирамиды является квадрат, площадь которого считается так: S = a 2 , где а – длина его стороны.

Следовательно, формулу объема можно представить в виде:

4. Объем правильной шестиугольной пирамиды

Основанием правильной шестиугольной пирамиды является правильный шестиугольник, площадь которого вычисляется по формуле (а – сторона основания):

С учетом этого, объем фигуры считается так:

Примеры задач

Задание 1
Найдите объем правильной треугольной пирамиды, если известно, что ее высота составляет 16 см, а длина стороны ее основания – 8 см.

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные значения:

Задание 2
Высота правильной четырехугольной пирамиды равна 12 см, а сторона ее основания – 3 см. Найдите объем фигуры.

Читайте также:  Герметик объем не менее 280 мл

Решение:
Площадь квадрата, который является основанием пирамиды, равна 9 см 2 (3 см ⋅ 3 см). Следовательно, объем равен:

Источник

Формула объема пирамиды

Пирамида — многогранник, основанием которого является произвольный многоугольник, а все грани представляют собой треугольники с общей вершиной, являющейся вершиной пирамиды.

Элементы пирамиды

Апофема — высота боковой грани правильной пирамиды, проведённая из её вершины (также апофемой называют длину перпендикуляра, опущенного из середины правильного многоугольника на одну из его сторон);

Боковые грани — треугольники, сходящиеся в вершине;

Боковые ребра — общие стороны боковых граней;

Вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания;

Высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);

Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания;

Основание — многоугольник, которому не принадлежит вершина пирамиды.

Объем пирамиды через площадь основания и высоту

Объем пирамиды равен одной трети произведения площади основания S(ABCDEF) на высоту h (OS)

\[ \LARGE V = \frac<1> <3>\cdot S \cdot h \]

где:
V — объем пирамиды
S — площадь основания пирамиды
h — высота пирамиды

Калькулятор объема пирамиды через площадь основания и высоту

Объём усечённой пирамиды

Усеченная пирамида — часть пирамиды между ее основанием и этим сечением. Сечение параллельное основанию пирамиды делит пирамиду на две части.

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1 (abcdef) , нижнего основания усеченной пирамиды S2 (ABCDEF) и средней пропорциональной между ними.

\[ \LARGE V = \frac<1> <3>\cdot h \cdot \left( S_1 + \sqrt + S_2 \right) \]

где:
V — объем пирамиды
S1 — площадь верхнего основания усеченной пирамиды
S2 — площадь нижнего основания усеченной пирамиды
h — высота усеченной пирамиды

Калькулятор объема усечённой пирамиды

Объём правильной пирамиды

Правильная пирамида — пирамида, в основани, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.

Объем правильной пирамиды равен одной трети произведения площади правильного многоугольника, являющегося основанием S (ABCDEF) на высоту h (OS)

где:
V — объем пирамиды
a — сторона основания пирамиды
n — количество сторон многоугольника в основании
h — высота усеченной пирамиды

Калькулятор объёма правильной пирамиды

Объём правильной треугольной пирамиды

Правильная треугольная пирамида — пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.

Объем правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC) на высоту h (OS)

где:
V — объем пирамиды
a — сторона основания пирамиды
h — высота пирамиды

Калькулятор объёма правильной треугольной пирамиды

Объём правильной четырёхугольной пирамиды

Правильная четырехугольная пирамида — пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.

Объем правильной четырехугольной пирамиды равен одной трети произведения площади квадрата, являющегося основанием S (ABCD) на высоту h (OS)

\[ \LARGE V = \frac<1> <3>h \cdot a^2 \]

где:
V — объем пирамиды
a — сторона основания пирамиды
h — высота пирамиды

Калькулятор объёма правильной четырёхугольной пирамиды

Объём тетраэдра

Тетраэдр — пирамида, у которой все грани — равносторонние треугольники.

Объем тетраэдра — равен дроби в числителе которой корень квадратный из двух в знаменателе двенадцать, помноженной на куб длины ребра тетраэдра

где:
V — объем пирамиды
a — сторона основания пирамиды

Читайте также:  Как использовать весь объем флешки

Источник

Объем пирамиды

В этой статье вы поймете что такое пирамида и какими они бывают.

Вы научитесь вычислять объем пирамиды, высоту и другие ее параметры.

Вы научитесь решать задачу на доказательство (ЕГЭ №14) и записывать доказательства так, чтобы не сняли баллы на ЕГЭ.

Объем пирамиды — коротко о главном

Определение пирамиды:

Пирамида – это многогранник, который состоит из любого плоского многоугольника (основание пирамиды), точки, не лежащей в плоскости основания, (вершина пирамиды) и всех отрезков, соединяющих вершину пирамиды с точками основания.

Треугольники, в которые «сливаются» эти отрезки, называются боковыми гранями, а отрезки, проведённые к вершинам основания — это боковые ребра.

Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Правильная пирамида — пирамида, у которой в основании лежит правильный многоугольник, а вершина пирамиды проецируется в центр основания.

Свойства правильной пирамиды:

  • В правильной пирамиде все боковые рёбра равны.
  • Все боковые грани – равнобедренные треугольники и все эти треугольники равны.

Объем пирамиды:

Что такое пирамида

Как она выглядит?

Вместо того, чтобы читать длинное определение, достаточно просто посмотреть на картинку:

Видишь: у пирамиды внизу (говорят «в основании») какой-нибудь многоугольник, и все вершины этого многоугольника соединены с некоторой точкой в пространстве (эта точка называется «вершина»).

У всей этой конструкции ещё есть боковые грани, боковые рёбра и рёбра основания.

Ещё раз нарисуем пирамиду вместе со всеми этими названиями:

Некоторые пирамиды могут выглядеть очень странно, но всё равно это – пирамиды.

Вот, например, совсем «косая» пирамида.

И ещё немного о названиях: если в основании пирамиды лежит треугольник, то пирамида называется треугольной, если четырёхугольник, то четырёхугольной, а если стоугольник, то … догадайся сам.

Высота пирамиды

Высота пирамиды – перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

При этом точка, куда oпустилась высота, называется основанием высоты.

Обрати внимание, что в «кривых» пирамидах высота может вообще оказаться вне пирамиды.

И ничего в этом страшного нет. Похоже на тупоугольный треугольник.

Правильная пирамида

Правильной называется такая пирамида, у которой в основании лежит правильный многоугольник, а вершина пирамиды проецируется в центр основания.

Много сложный слов?

Давай расшифруем: «В основании – правильный многоугольник» — это понятно.

А теперь вспомним, что у правильного многоугольника есть центр – точка, являющаяся центром и вписанной, и описанной окружности.

Ну вот, а слова «вершина проецируется в центр основания» означают, что основание высоты попадает как раз в центр основания. Смотри, как ровненько и симпатично выглядит правильная пирамида.

Шестиугольная правильная пирамида

В основании – правильный шестиугольник, вершина \( \displaystyle S\) проецируется в центр основания.

Четырехугольная правильная пирамида

В основании – квадрат, вершина \( \displaystyle S\) проецируется в точку пересечения диагоналей этого квадрата.

Треугольная правильная пирамида

В основании – правильный треугольник, вершина \( \displaystyle S\) проецируется в точку пересечения высот (они же и медианы, и биссектрисы) этого треугольника.

Очень важные свойства правильной пирамиды

В правильной пирамиде:

  • Все боковые ребра равны
  • Все боковые грани – равнобедренные треугольники и все эти треугольники равны.

Объем пирамиды

Главная формула объема пирамиды

Откуда взялась именно \( \displaystyle \frac<1><3>\)?

Читайте также:  Albea объем масла двигателя

Это не так уж просто, и на первых порах нужно просто запомнить, что у пирамиды и конуса в формуле объема есть \( \displaystyle \frac<1><3>\), а у цилиндра – нет.

Теперь давай посчитаем объем самых популярных пирамид.

Объем правильной треугольной пирамиды

Пусть сторона основания равна \( \displaystyle a\), а боковое ребро равно \( \displaystyle b\). Нужно найти \( \displaystyle <_<осн>>\) и \( \displaystyle H\).

\( \displaystyle <_<осн>>\) – это площадь правильного треугольника \( \displaystyle ABC\).

Вспомним, как искать эту площадь.

Используем формулу площади:

\( \displaystyle S=\frac<1><2>ab\cdot \sin \gamma \)

У нас «\( \displaystyle a\)» – это \( \displaystyle a\), а «\( \displaystyle b\)» — это тоже \( \displaystyle a\), а \( \displaystyle \sin \gamma =\sin 60<>^\circ =\frac<\sqrt<3>><2>\)

Теперь найдем \( \displaystyle H\).

По теореме Пифагора для \( \displaystyle \Delta SOC\)

Чему же равно \( \displaystyle OC\)?

Это радиус описанной окружности в \( \displaystyle \Delta ABC\), потому что пирамида правильная и, значит, \( \displaystyle O\) — центр \( \displaystyle \Delta ABC\)

Найдем \( \displaystyle OC\) (Подробнее смотри в теме «Правильный треугольник»).

\( \displaystyle OC=\frac<2><3>CK\), так как \( \displaystyle O\) — точка пересечения и медиан тоже.

\( \displaystyle C<^<2>>=A<^<2>>-A<^<2>>\) (теорема Пифагора для \( \displaystyle \Delta ACK\))

Подставим \( \displaystyle OC\) в формулу для \( \displaystyle H\).

И подставим все в формулу объема:

Внимание: если у тебя правильный тетраэдр (т.е. \( \displaystyle b=a\)), то формула получается такой:

Объем правильной четырехугольной пирамиды

Пусть сторона основания равна \( \displaystyle a\), а боковое ребро равно \( \displaystyle b\).

Здесь \( \displaystyle <_>\) и искать не нужно; ведь в основании – квадрат, и поэтому \( \displaystyle <_>=<^<2>>\).

Найдем \( \displaystyle H\). По теореме Пифагора для \( \displaystyle \Delta SOD\)

Известно ли нам \( \displaystyle OD\)? Ну, почти. Смотри:

Подставляем \( \displaystyle OD\) в формулу для \( \displaystyle H\):

А теперь и \( \displaystyle H\) и \( \displaystyle <_>\) подставляем в формулу объема.

Объем правильной шестиугольной пирамиды

Пусть сторона основания равна \( \displaystyle a\), а боковое ребро \( \displaystyle b\).

Как найти \( \displaystyle <_>\)? Смотри, шестиугольник \( \displaystyle ABCDEF\) состоит ровно из шести одинаковых правильных треугольников. Площадь правильного треугольника мы уже искали при подсчете объема правильной треугольной пирамиды, здесь используем найденную формулу.

Теперь найдем \( \displaystyle H\) (это \( \displaystyle SO\)).

По теореме Пифагора для \( \displaystyle \Delta SOE\)

Но чему же равно \( \displaystyle OE\)? Это просто \( \displaystyle a\), потому что \( \displaystyle \Delta EOF\) (и все остальные тоже) правильный.

Бонус: Вебинар из нашего курса подготовки к ЕГЭ по математике

ЕГЭ №14. Стереометрия. Пирамида. Разбор варианта профильного ЕГЭ 2020

В этом видео мы разобрали следующие вопросы:

  • Как нарисовать шестиугольную пирамиду и как исправить рисунок, если грани пирамиды сливаются.
  • Как правильно подписать вершины пирамиды.
  • Как доказать пункты А и Б задания №14 из ЕГЭ и записать доказательство так, чтобы не сняли баллы на экзамене.
  • Как найти площадь основания пирамиды (чтобы найти объем) и правильно записать решение.
  • Как найти объем пирамиды.

Источник

Поделиться с друзьями
Объясняем