Как найти объем нового куба

Нахождение объема куба: формула и задачи

В данной публикации мы рассмотрим, как можно найти объем куба и разберем примеры решения задач для закрепления материала.

Формула вычисления объема куба

1. Через длину ребра

Объем (V) куба равняется произведению его длины на ширину на высоту. Т.к. данные величины у куба равны, следовательно, его объем равен кубу любого ребра.

V = a ⋅ a ⋅ a = a 3

2. Через длину диагонали грани

Как мы знаем, грани куба равны между собой и являются квадратом, сторона которого может быть найдена через длину диагонали по формуле: a=d/√ 2 .

Следовательно, вычислить объем куба можно так:

Примеры задач

Задание 1
Вычислите объем куба, если его ребро равняется 5 см.

Решение:
Подставляем в формулу заданное значение и получаем:
V = 5 см ⋅ 5 см ⋅ 5 см = 125 см 3 .

Задание 2
Известно, что объем куба равен 512 см 3 . Найдите длину его ребра.

Решение:
Пусть ребро куба – это a. Выведем его длину из формулы расчета объема:

Задание 3
Длина диагонали грани куба составляет 12 см. Найдите объем фигуры.

Решение:
Применим формулу, в которой используется диагональ грани:

Источник

Объемы фигур. Объем куба.

Куб — трехмерная геометрическая фигура, у которой все ребра равны (длина равна ширине и равна высоте).

У куба шесть квадратных граней, которые пересекаются под прямым углом и стороны которых равны.

Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна

ширине и равна высоте, то объем куба равен s 3 ,

где s – длина одного (любого) ребра куба.

Воспользуйтесь онлайн калькулятором для расчета объема куба: объем куба, онлайн расчет.

Для расчета объемов других тел воспользуйтесь этим калькулятором: калькулятор объемов фигур.

Метод 1 из 3: Возведение в куб ребра куба

  • Найдите длину одного ребра куба. Как правило, длина ребра куба дана в условии задачи. Если вы

вычисляете объем реального объекта кубической формы, измерьте его ребро линейкой или рулеткой.

Рассмотрим пример. Ребро куба равно 5 см. Найдите объем куба.

Возведите в куб длину ребра куба. Другими словами, умножьте длину ребра куба саму на себя три раза.

Если s — длина ребра куба, то

и, таким образом, вы вычислите объем куба.

Этот процесс аналогичен процессу нахождения площади основания куба (равна произведению длины на

ширину квадрата в основании) и последующему умножению площади основания на высоту куба (то есть,

другими словами, вы умножаете длину на ширину и на высоту). Так как в кубе длина ребра равна ширине и

равна высоте, то это процесс можно заменить возведением ребра куба в третью степень.

В нашем примере объем куба равен:

  • К ответу припишите единицы измерения объема. Так как объем – это количественная

характеристика пространства, занимаемого телом, то единицами измерения объема являются кубические

В нашем примере размер ребра куба давался в сантиметрах, поэтому объем будет измеряться в кубических

сантиметрах (или в см 3 ). Итак, объем куба равен 125 см 3 .

Читайте также:  Amd radeon hd 6620g характеристики объем памяти

Если размер ребра куба дается в других единицах, то и объем куба измеряется в соответствующих

Например, если ребро куба равно 5 м (а не 5 см), то его объем равен 125 м 3 .

Метод 2 из 3: Вычисление объема по площади поверхности

  • В некоторых задачах длина ребра куба не дана, но даны другие величины, с помощью которых вы

можете найти ребро куба и его объем. Например, если вам дана площадь поверхности куба, то разделите

ее на 6, из полученного значения извлеките квадратный корень и вы найдете длину ребра куба. Затем

возведите длину ребра куба в третью степень и вычислите объем куба.

Площадь поверхности куба равна 6s 2 ,

где sдлина ребра куба (то есть вы находите площадь одной грани куба, а затем умножаете ее на 6, так

как у куба 6 равных граней).

Рассмотрим пример. Площадь поверхности куба равна 50 см 2 . Найдите объем куба.

  • Разделите площадь поверхности куба на 6 (так как у куба 6 равных граней, вы получите площадь

одной грани куба). В свою очередь площадь одной грани куба равна s 2 , где s – длина ребра куба.

В нашем примере: 50/6 = 8,33 см 2 (не забывайте, что площадь измеряется в квадратных единицах — см 2 ,

  • Так как площадь одной грани куба равна s 2 , то извлеките квадратный корень из значения площади

одной грани и получите длину ребра куба.

В нашем примере, √8,33 = 2,89 см.

  • Возведите в куб полученное значение, чтобы найти объем куба.

В нашем примере: 2,89 * 2,89 * 2,89 = 2,893 = 24,14 см 3 . К ответу не забудьте приписать кубические

Метод 3 из 3: Вычисление объема по диагонали

  • Разделите диагональ одной из граней куба на √2, чтобы найти длину ребра куба. Таким образом,

если в задаче дана диагональ грани (любой) куба, то вы можете найти длину ребра куба, разделив

Рассмотрим пример. Диагональ грани куба равна 7 см. Найдите объем куба. В этом случае длина ребра куба

равна 7/√2 = 4,96 см. Объем куба равен 4,963 = 122,36 см 3 .

Запомните: d 2 = 2s 2 ,

где d — диагональ грани куба, s – ребро куба. Эта формула вытекает из теоремы Пифагора, согласно

которой квадрат гипотенузы (в нашем случае диагональ грани куба) прямоугольного треугольника равен

сумме квадратов катетов (в нашем случае ребер), то есть:

d 2 = s 2 + s 2 = 2s 2 .

  • Разделите диагональ куба на √3, чтобы найти длину ребра куба. Таким образом, если в задаче

дана диагональ куба, то вы можете найти длину ребра куба, разделив диагональ на √3.

Диагональ куба — отрезок, соединяющий две вершины, симметричные относительно центра куба, равный

(где D — диагональ куба, s – ребро куба).

Эта формула вытекает из теоремы Пифагора, согласно которой квадрат гипотенузы (в нашем случае

диагональ куба) прямоугольного треугольника равен сумме квадратов катетов (в нашем случае один катет –

это ребро, а второй катет – это диагональ грани куба, равная 2s 2 ), то есть

D 2 = s 2 + 2s 2 = 3s 2 .

Рассмотрим пример. Диагональ куба равна 10 м. Найдите объем куба.

Источник

Объем куба

Свойства

Куб представляет собой прямоугольный параллелепипед, у которого все ребра равны между собой. Поэтому объем куба вычисляется не просто произведением всех трех его параметров, а возведением ребра куба в третью степень. Поэтому чтобы вычислить ребро куба через объем необходимо извлечь из последнего кубический корень. a=∛V

Читайте также:  Champion lmh5640 объем масла

Площадь грани куба или одной его стороны равна площади квадрата, стороной которого является ребро куба, поэтому кубический корень из объема необходимо возвести во вторую степень. S=∛(V^2 )

Площадь боковой и полной поверхности куба состоят из четырех и шести таких граней соответственно, поэтому их формулы являются аналогией предыдущей с добавлением необходимых коэффициентов. S_(б.п.)=4∛(V^2 ) S_(п.п.)=6∛(V^2 )

Периметр куба равен сумме двенадцати его ребер, равных между собой, поэтому зная, что каждое ребро представлено в виде кубического корня из объема, необходимо умножить его на двенадцать. P=12a=12∛V

Чтобы вычислить диагональ грани куба, нужно вернуться к формуле диагонали квадрата, которым представлены грани. Согласно ей, чтобы найти диагональ, нужно умножить корень из двух на сторону квадрата – ребро куба в данном случае, или кубический корень из объема. d=a√2=∛V √2

Найти диагональ самого куба немного сложнее. Для этого три вершины – диагонали и прилегающего к ней бокового ребра – соединяются в прямоугольный треугольник через диагональ основания, и по теореме Пифагора выводится формула диагонали куба. (рис.2.1) a^2+d^2=D^2 D^2=a^2+2a^2 D^2=3a^2 D=a√3=∛V √3

Чтобы найти радиус сферы, вписанной в куб, через объем, нужно разделить его кубический корень, представляющий собой ребро куба, на два. (рис. 2.2) r=a/2=∛V/2

Радиус сферы, описанной вокруг куба, равен половине диагонали куба, поэтому подставив вместо диагонали необходимую формулу через объем, получим следующее выражение: (рис.2.3) R=D/2=(∛V √3)/2

Источник

Калькулятор для расчета объема куба

Куб или гексаэдр – правильный многогранник, который имеет шесть граней-квадратов. Кубы часто встречаются в реальной жизни, хотя они и не такие популярные, как призмы или параллелепипеды. В любом случае калькулятор объема куба пригодится вам для расчета объема этой распространенной фигуры.

История гексаэдра

Куб относится к классу правильных многогранников, известных человечеству еще с давних времен. Древние цивилизации придавали игральным костям форму куба, а изображения многогранников встречаются на предметах быта, созданных в эпоху неолита. Особое внимание многогранникам, и в частности гексаэдру, уделяли в Древней Греции. Античные греки были неравнодушны к геометрии и числам, выстраивая математические теории создания и функционирования мира. Так, философ Платон использовал образы правильных многогранников для описания природных стихий. Куб в его стройной системе мироздания ассоциировался с землей, так как именно гексаэдр – самый устойчивый правильный многогранник.

Евклид дал полное описание правильных многогранников, в том числе и куба, в «Началах» – своем фундаментальном труде по геометрии. Позднее многогранниками занимался Иоганн Кеплер, который построил модель планетной системы с использованием этих фигур. В кеплеровской модели куб соответствовал Сатурну, вписанному в окружность колец газового гиганта. Гексаэдр, пожалуй, вторая по идеальности фигура после сферы, поэтому она получила важное значение в человеческой культуре.

Геометрия куба

Изучая куб, ученые нашли все его характеристики. Мы давно знаем количество граней (6), ребер (12), вершин (8) или осей симметрии (9). Но с течением времени геометры узнали много нового. Так, в неевклидовой геометрии, которая рассматривает фигуры на сферических или гиперболических поверхностях, прямых углов, следовательно, и привычных нам квадратов и кубов не существует. Одновременно куб – оригинальная фигура, которая существует во всех многомерных пространствах. В отличие от треугольника или параллелограмма, в нульмерном пространстве куб представляет собой точку, в одномерном – простой отрезок, в двухмерном – квадрат, в трехмерном – собственно куб, в четырехмерном – тессеракт, а в пятимерном – пентеракт. Продолжать последовательность можно до десятимерных пространств.

Читайте также:  Как меняется объем бензина от температуры

Использование гексаэдров

Кубические фигуры используются не только в архитектуре и строительстве. Куб – эффективная форма для хранения данных, поэтому кубические сетки находят применение в аналитике, программировании, базах данных и прочих научных приложениях. Уникальная форма гексаэдра дает возможность оперировать n-мерными кубами для измерения бесконечно малых объемов или визуализации данных.

Объем куба

Объем любой геометрической фигуры – это количественная характеристика, демонстрирующая, сколько единичных кубов вмещает выбранная фигура. Объем куба, пожалуй, самая простая формула для вычисления этой характеристики. Выглядит она следующим образом:

где a – длина ребра.

Вычислить объем кубической фигуры можно так же при помощи диагонали грани или диагонали самого гексаэдра. Диагональ грани – это диагональ квадрата, которая связана с длиной ребра следующим соотношением:

Диагональ куба связана с длиной ребра похожим соотношением:

Таким образом, рассчитать объем гексаэдра можно оперируя тремя характеристиками фигуры.

Наша программа представляет собой онлайн-калькулятор для вычисления численных характеристик многогранников и тел вращения. Для определения объема достаточно замерить одну характеристику на выбор и ввести это значение в соответствующую ячейку. Программа не только вычислит объем гексаэдра, но и отобразит значения остальных двух неизвестных характеристик.

Естественно, на практике гораздо проще замерить длину ребра куба, однако в школьном курсе стереометрии встречаются задачи на объем куба, в которых даны именно диагонали фигуры. Таким образом, наш калькулятор пригодится в основном школьникам. В быту для вычисления объема достаточно возвести в куб всего один параметр, но если это слишком большое или дробное значение, то для таких вычислений вам и пригодится наша программа.

Рассмотрим пару примеров

К примеру, вы хотите сделать из полимерной глины сплошные игральные кости, которые, естественно, выполняются в форме гексаэдра. Вы хотите сделать пять комплектов, поэтому вам интересно узнать, какой объем глины потребуется для изготовления такой поделки. Стандартный игральный кубик имеет длину ребра 1,6 см. Используя программу, узнаем, что на изготовление одного игрального кубика понадобится V = 4,1 кубических сантиметров полимерной глины. Так как вам необходимо 5 комплектов по 2 кубика в каждом, то общий расход материала составит 41 кубический сантиметр.

Школьная задача

В задаче по стереометрии требуется вычислить объем гексаэдра, диагональ которого равна 5 см. Для решения этой задачи можно использовать формулу, представленную выше, и сначала выразить ребро через диагональ:

Согласно этой формуле, длина ребра куба будет приблизительно равна 5/sqrt(3) = 2,88. Теперь для вычисления объема достаточно возвести полученный результат в третью степень и получить приблизительный результат V = 23,88 кубических сантиметров. Приблизительность вычислений объясняется тем, что корень из трех мы округлили до двух знаков после запятой. Калькулятор использует более точные значения корней, поэтому можно пропустить эти вычисления и просто ввести значение 5 в ячейку D онлайн-калькулятора и получить точный результат V = 24,05.

Заключение

Гексаэдры занимают в человеческой цивилизации большое значение, поэтому не только школьникам требуется вычислять объем этой фигуры. Используйте наши онлайн-калькуляторы для быстрых и точных вычислений характеристик правильных многогранников и тел вращения.

Источник

Поделиться с друзьями
Объясняем